我使用 5 个高效网络模型制作了一个堆叠模型,用于 Kaggle 比赛。下面给出的是堆叠模型的架构:
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1_0 (InputLayer) [(None, 600, 600, 3) 0
__________________________________________________________________________________________________
input_3_1 (InputLayer) [(None, 600, 600, 3) 0
__________________________________________________________________________________________________
input_5_2 (InputLayer) [(None, 600, 600, 3) 0
__________________________________________________________________________________________________
input_7_3 (InputLayer) [(None, 600, 600, 3) 0
__________________________________________________________________________________________________
input_9_4 (InputLayer) [(None, 600, 600, 3) 0
__________________________________________________________________________________________________
effnet_layer0_0 (Functional) (None, None, None, 2 64097680 input_1_0[0][0]
__________________________________________________________________________________________________
effnet_layer1_1 (Functional) (None, None, None, 2 64097680 input_3_1[0][0]
__________________________________________________________________________________________________
effnet_layer2_2 (Functional) (None, None, None, 2 64097680 input_5_2[0][0]
__________________________________________________________________________________________________
effnet_layer3_3 (Functional) (None, None, None, 2 64097680 input_7_3[0][0]
__________________________________________________________________________________________________
effnet_layer4_4 (Functional) (None, None, None, 2 64097680 input_9_4[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_0 (Glo (None, 2560) 0 effnet_layer0_0[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1_1 (G (None, 2560) 0 effnet_layer1_1[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_2_2 (G (None, 2560) 0 effnet_layer2_2[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_3_3 (G (None, 2560) 0 effnet_layer3_3[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_4_4 (G (None, 2560) 0 effnet_layer4_4[0][0]
__________________________________________________________________________________________________
dropout_0 (Dropout) (None, 2560) 0 global_average_pooling2d_0[0][0]
__________________________________________________________________________________________________
dropout_1_1 (Dropout) (None, 2560) 0 global_average_pooling2d_1_1[0][0
__________________________________________________________________________________________________
dropout_2_2 (Dropout) (None, 2560) 0 global_average_pooling2d_2_2[0][0
__________________________________________________________________________________________________
dropout_3_3 (Dropout) (None, 2560) 0 global_average_pooling2d_3_3[0][0
__________________________________________________________________________________________________
dropout_4_4 (Dropout) (None, 2560) 0 global_average_pooling2d_4_4[0][0
__________________________________________________________________________________________________
dense_0 (Dense) (None, 4) 10244 dropout_0[0][0]
__________________________________________________________________________________________________
dense_1_1 (Dense) (None, 4) 10244 dropout_1_1[0][0]
__________________________________________________________________________________________________
dense_2_2 (Dense) (None, 4) 10244 dropout_2_2[0][0]
__________________________________________________________________________________________________
dense_3_3 (Dense) (None, 4) 10244 dropout_3_3[0][0]
__________________________________________________________________________________________________
dense_4_4 (Dense) (None, 4) 10244 dropout_4_4[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 20) 0 dense_0[0][0]
dense_1_1[0][0]
dense_2_2[0][0]
dense_3_3[0][0]
dense_4_4[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 10) 210 concatenate[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 4) 44 dense[0][0]
==================================================================================================
Total params: 320,539,874
Trainable params: 254
Non-trainable params: 320,539,620
堆叠模型的性能指标:
基本模型的性能指标:
但是,当我使用堆叠模型进行 Kaggle 预测时,我得到了 0.551 的分数,而当我使用其中一个基本模型时,我得到了 0.581 的分数。
为什么会这样?堆叠模型不应该比基本模型提供更好的结果吗?