0

如何在具有每臂特征的多臂强盗上绘制来自 Tensorflow(带有完整代码)的此示例的每次迭代的奖励值?

本教程有一个带图的遗憾指标:

def _all_rewards(observation, hidden_param):
  """Outputs rewards for all actions, given an observation."""
  hidden_param = tf.cast(hidden_param, dtype=tf.float32)
  global_obs = observation['global']
  per_arm_obs = observation['per_arm']
  num_actions = tf.shape(per_arm_obs)[1]
  tiled_global = tf.tile(
      tf.expand_dims(global_obs, axis=1), [1, num_actions, 1])
  concatenated = tf.concat([tiled_global, per_arm_obs], axis=-1)
  rewards = tf.linalg.matvec(concatenated, hidden_param)
  return rewards

def optimal_reward(observation):
  """Outputs the maximum expected reward for every element in the batch."""
  return tf.reduce_max(_all_rewards(observation, reward_param), axis=1)

regret_metric = tf_bandit_metrics.RegretMetric(optimal_reward)

num_iterations =  40# @param
steps_per_loop = 1 # @param

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
    data_spec=agent.policy.trajectory_spec,
    batch_size=BATCH_SIZE,
    max_length=steps_per_loop)

observers = [replay_buffer.add_batch, regret_metric]

driver = dynamic_step_driver.DynamicStepDriver(
    env=per_arm_tf_env,
    policy=agent.collect_policy,
    num_steps=steps_per_loop * BATCH_SIZE,
    observers=observers)

regret_values = []

for _ in range(num_iterations):
  driver.run()
  loss_info = agent.train(replay_buffer.gather_all())
  replay_buffer.clear()
  regret_values.append(regret_metric.result())

plt.plot(regret_values)
plt.title('Regret of LinUCB on the Linear per-arm environment')
plt.xlabel('Number of Iterations')
_ = plt.ylabel('Average Regret')

在此处输入图像描述

我最终会喜欢这样的情节,但随着迭代的奖励显示它们在增加;我该如何去修改代码来做到这一点?

4

0 回答 0