在 torchtext bucketiterator 中填充之前是否可以获取每个句子的长度:
train_loader = torchtext.legacy.data.BucketIterator(train_data, batch_size = 64, repeat=True, shuffle=True, sort_key = lambda x: len(x.text), sort=False, sort_within_batch=True, device = device)
bucketiterator 数据加载器:
inputs: tensor([[ 34, 87, 2, ..., 227, 239, 263],
[ 138, 7, 1006, ..., 840, 142, 665],
[ 549, 4, 1028, ..., 11, 14, 4],
...,
[ 1, 1, 5, ..., 66, 23, 13],
[ 1, 1, 1062, ..., 177, 252, 1587],
[ 1, 1, 66, ..., 553, 52, 73]]), shape: torch.Size([64, 91])
就像使用 pytorch 数据加载器时一样:
train_loader = data.DataLoader(train_data, batch_size = 64, shuffle=True, collate_fn=padding)
def padding(batch):
doc = [doc['input'] for doc in batch]
len_doc = [len(doc['input']) for doc in batch]
doc_pad = pad_sequence(doc, batch_first=True, padding_value=0)
return doc_pad, len_doc
pytorch 数据加载器:
inputs: tensor([[ 2, 1396, 2686, ..., 0, 0, 0],
[ 2, 1391, 1396, ..., 0, 0, 0],
[ 2, 2018, 2597, ..., 0, 0, 0],
...,
[ 2, 1546, 1623, ..., 0, 0, 0],
[ 2, 1435, 1396, ..., 0, 0, 0],
[ 2, 1391, 1396, ..., 0, 0, 0]]), shape: torch.Size([64, 40])
inputs_len_before_padding: tensor([18, 8, 21, 16, 16, 12, 40, 12, 9, 12, 17, 12, 17, 15, 16, 12, 8, 24,
25, 10, 22, 8, 8, 13, 12, 22, 17, 14, 21, 14, 19, 13, 21, 8, 28, 16,
31, 24, 23, 19, 10, 7, 16, 12, 16, 12, 17, 12, 18, 11, 8, 13, 17, 14,
11, 13, 13, 20, 8, 12, 22, 7, 9, 11]), shape: torch.Size([64])