我试图在拥抱面部情绪分析预训练模型的帮助下获得评论的情绪。它返回错误,如Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512) with Hugging face sentiment classifier
.
下面我附上代码请看
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import transformers
import pandas as pd
model = AutoModelForSequenceClassification.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
token = AutoTokenizer.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
classifier = pipeline(task='sentiment-analysis', model=model, tokenizer=token)
data = pd.read_csv('/content/drive/MyDrive/DisneylandReviews.csv', encoding='latin-1')
data.head()
输出是
Review
0 If you've ever been to Disneyland anywhere you...
1 Its been a while since d last time we visit HK...
2 Thanks God it wasn t too hot or too humid wh...
3 HK Disneyland is a great compact park. Unfortu...
4 the location is not in the city, took around 1...
其次是
classifier("My name is mark")
输出是
[{'label': 'POSITIVE', 'score': 0.9953688383102417}]
后面跟着代码
basic_sentiment = [i['label'] for i in value if 'label' in i]
basic_sentiment
输出是
['POSITIVE']
将总行数附加到空列表
text = []
for index, row in data.iterrows():
text.append(row['Review'])
我正在尝试获取所有行的情绪
sent = []
for i in range(len(data)):
sentiment = classifier(data.iloc[i,0])
sent.append(sentiment)
错误是:
Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512). Running this sequence through the model will result in indexing errors
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-19-4bb136563e7c> in <module>()
2
3 for i in range(len(data)):
----> 4 sentiment = classifier(data.iloc[i,0])
5 sent.append(sentiment)
11 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
1914 # remove once script supports set_grad_enabled
1915 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 1916 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
1917
1918
IndexError: index out of range in self