我尝试使用np.array.split
将数据集分成两部分,但效果不佳
希望有人可以就这个问题提供一些建议
x` (images tensor) and `y` (labels) should have the same length. Found: x.shape = (14218, 32, 32, 3), y.shape = (2, 7109, 10)
代码部分
y_train = utils.to_categorical(y_train_data, number_of_classes) # one-hot encoding
y_test = utils.to_categorical(y_test_data, number_of_classes) # one-hot encoding
# 查看一个类别样本
print('对应类别为7\n', y_train[1])
'''clients_num = 2
X_train = np.array_split(X_train, clients_num)
y_train = np.array_split(y_train, clients_num)
print(np.shape(y_train))'''
input_shape = (img_rows, img_cols, 1)
rgb_batch = np.repeat(X_train_data[..., np.newaxis], 3, -1)
rgb_batch1 = np.repeat(X_test_data[..., np.newaxis], 3, -1)
X_train = tf.image.resize(rgb_batch, (32, 32))
X_test = tf.image.resize(rgb_batch1, (32, 32))
tf.dtypes.cast(X_train, tf.float32)
tf.dtypes.cast(X_test, tf.float32)
X_train /= 255.0
X_test /= 255.0