我想训练能够识别以下内容的 rnn 网络:我有一个由位串(长度可以是 n>20)组成的语言 L,该语言中的每个位串都满足语言的模式(不是目前相关)。
我创建了一个数据集,它就像一个以位串为键、真/假为值的地图:
001101000010010, False
111001001000000, False
111011101001100, False
011111000101101, False
10000110000110001100, True
011100100001010, False
....
我试图在 pytorch 中创建 rnn 网络:
class myDataset(T.utils.data.Dataset):
def __init__(self, src_file, m_rows=None):
tmp_x = np.loadtxt(src_file, max_rows=m_rows,
usecols=[0], delimiter=",", skiprows=0, dtype=np.int64)
tmp_y = np.genfromtxt(src_file, max_rows=m_rows,
usecols=[1], delimiter=",", dtype=bool)
tmp_y = tmp_y.reshape(-1, 1) # 2-D required
self.x_data = T.from_numpy(tmp_x).to(device)
self.y_data = T.from_numpy(tmp_y).to(device)
def __len__(self):
return len(self.x_data)
def __getitem__(self, idx):
preds = self.x_data[idx, :] # or just [idx]
val = self.y_data[idx, :]
return (preds, val) # tuple of two matrices
并训练它:
net.train() # set mode
for epoch in range(0, max_epochs):
T.manual_seed(1 + epoch) # recovery reproducibility
epoch_loss = 0 # for one full epoch
for (batch_idx, batch) in enumerate(train_ldr):
(X, Y) = batch # (predictors, targets)
optimizer.zero_grad() # prepare gradients
oupt = net(X) # predicted prices
loss_val = loss_func(oupt, Y) # avg per item in batch
epoch_loss += loss_val.item() # accumulate avgs
loss_val.backward() # compute gradients
optimizer.step() # update wts
但加载数据时出现错误:
溢出错误:Python int 太大而无法转换为 C long