假设我有一个自定义层,它使用 TF 2.4 使用外部可训练变量为我计算损失(是的,我知道这是一个愚蠢的例子和损失,它只是为了重现性,实际损失要复杂得多):
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense, Layer, Input
from tensorflow.keras import Model
from tensorflow.keras.callbacks import EarlyStopping
import tensorflow as tf
n_col = 10
n_row = 1000
X = np.random.normal(size=(n_row, n_col))
beta = np.arange(10)
y = X @ beta
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
class MyLoss(Layer):
def __init__(self, var1, var2):
super(MyLoss, self).__init__()
self.var1 = tf.Variable(var1)
self.var2 = tf.Variable(var2)
def get_vars(self):
return self.var1, self.var2
def custom_loss(self, y_true, y_pred):
return self.var1 ** 2 * tf.math.reduce_mean(tf.math.square(y_true-y_pred)) + self.var2 ** 2
def call(self, y_true, y_pred):
self.add_loss(self.custom_loss(y_true, y_pred))
return y_pred
inputs = Input(shape=(X_train.shape[1],))
y_input = Input(shape=(1,))
hidden1 = Dense(10)(inputs)
output = Dense(1)(hidden1)
my_loss = MyLoss(0.5, 0.5)(y_input, output) # here can also initialize those var1, var2
model = Model(inputs=[inputs, y_input], outputs=my_loss)
model.compile(optimizer= 'adam')
训练这个模型很简单:
history = model.fit([X_train, y_train], None,
batch_size=32, epochs=100, validation_split=0.1, verbose=0,
callbacks=[EarlyStopping(monitor='val_loss', patience=5)])
如果我们编写一个自定义回调或逐个训练纪元,我们可以看到如何收敛到 0 var1
,var2
正如预期的那样:
var1_list = []
var2_list = []
for i in range(100):
if i % 10 == 0:
print('step %d' % i)
model.fit([X_train, y_train], None,
batch_size=32, epochs=1, validation_split=0.1, verbose=0)
var1, var2 = model.layers[-1].get_vars()
var1_list.append(var1.numpy())
var2_list.append(var2.numpy())
plt.plot(var1_list, label='var1')
plt.plot(var2_list, 'r', label='var2')
plt.legend()
plt.show()
简短的问题:如何根据 和 的收敛性(即它们的向量大小,,并再次假设损失要复杂得多,您不能仅将此向量大小添加到损失中)使模型停止(EarlyStopping
与 some )?patience
var1
var2
self.var1**2 + self.var2**2
更长的问题:(如果你有时间/耐心)
- 是否可以实现自定义
Metric
并EarlyStopping
对其进行跟踪? - 在这种情况下,当“收敛”只有“最小值”或“最大值”
EarlyStopping
时,你将如何专注于“收敛”?mode
(我想知道我们可以扩展EarlyStopping
而不是扩展Callback
) - 我们可以在没有指标的情况下使用自定义回调来做到这一点吗?
- 我们如何结合上面的自定义损失,告诉
EarlyStopping
注意两者,即“如果你没有看到损失的改善和收敛的改善,耐心=10,就停止”?