- 列
lists
是dicts
。
- 可以使用 将
dict
中的每个移动到单独的列。list
pandas.explode()
- 将 的列转换为
dicts
数据框,其中键是列标题,值是观察值,使用pandas.json_normalize()
,.join()
这回到df
.
- 用于
.drop()
删除不需要的列。
- 如果该列包含作为字符串的字典列表(例如
"[{key: value}]"
),请参阅将Pandas 列内的字典/列表拆分为单独的列中的此解决方案,并使用:
df.col2 = df.col2.apply(literal_eval)
, 与from ast import literal_eval
.
import pandas as pd
# create sample dataframe
df = pd.DataFrame({'col1': ['x', 'y'], 'col2': [[{"target": "NAge", "segment": "21 and older"}, {"target": "MinAge", "segment": "21"}, {"target": "Retargeting", "segment": "people who may be similar to their customers"}, {"target": "Region", "segment": "the United States"}], [{"target": "NAge", "segment": "18 and older"}, {"target": "Location Type", "segment": "HOME"}, {"target": "Interest", "segment": "Hispanic culture"}, {"target": "Interest", "segment": "Republican Party (United States)"}, {"target": "Location Granularity", "segment": "country"}, {"target": "Country", "segment": "the United States"}, {"target": "MinAge", "segment": 18}]]})
# display(df)
col1 col2
0 x [{'target': 'NAge', 'segment': '21 and older'}, {'target': 'MinAge', 'segment': '21'}, {'target': 'Retargeting', 'segment': 'people who may be similar to their customers'}, {'target': 'Region', 'segment': 'the United States'}]
1 y [{'target': 'NAge', 'segment': '18 and older'}, {'target': 'Location Type', 'segment': 'HOME'}, {'target': 'Interest', 'segment': 'Hispanic culture'}, {'target': 'Interest', 'segment': 'Republican Party (United States)'}, {'target': 'Location Granularity', 'segment': 'country'}, {'target': 'Country', 'segment': 'the United States'}, {'target': 'MinAge', 'segment': 18}]
# use explode to give each dict in a list a separate row
df = df.explode('col2').reset_index(drop=True)
# normalize the column of dicts, join back to the remaining dataframe columns, and drop the unneeded column
df = df.join(pd.json_normalize(df.col2)).drop(columns=['col2'])
display(df)
col1 target segment
0 x NAge 21 and older
1 x MinAge 21
2 x Retargeting people who may be similar to their customers
3 x Region the United States
4 y NAge 18 and older
5 y Location Type HOME
6 y Interest Hispanic culture
7 y Interest Republican Party (United States)
8 y Location Granularity country
9 y Country the United States
10 y MinAge 18
得到count
- 如果目标是获取
count
每个'target'
相关的'segment'
counts = df.groupby(['target', 'segment']).count()
更新
import pandas as pd
from ast import literal_eval
# load the file
df = pd.read_csv('en-US.csv')
# replace NaNs with '[]', otherwise literal_eval will error
df.targets = df.targets.fillna('[]')
# replace null with None, otherwise literal_eval will error
df.targets = df.targets.str.replace('null', 'None')
# convert the strings to lists of dicts
df.targets = df.targets.apply(literal_eval)
# use explode to give each dict in a list a separate row
df = df.explode('targets').reset_index(drop=True)
# fillna with {} is required for json_normalize
df.targets = df.targets.fillna({i: {} for i in df.index})
# normalize the column of dicts, join back to the remaining dataframe columns, and drop the unneeded column
normalized = pd.json_normalize(df.targets)
# get the counts
counts = normalized.groupby(['target', 'segment']).segment.count().reset_index(name='counts')