我正在将 Pytorch 与 FashionMNIST 数据集一起使用,我想从 10 个类中的每一个中显示 8 个图像样本。但是,我不知道如何将训练测试拆分为 train_labels,因为我需要在标签(类)上循环并打印每个类的 8 个。知道我怎么能做到这一点吗?
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot')
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
# transforms.Lambda(lambda x: x.repeat(3,1,1)),
transforms.Normalize((0.5, ), (0.5,))])
# Download and load the training data
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)
# Download and load the test data
testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True)
print('Training set size:', len(trainset))
print('Test set size:',len(testset))