我目前正在使用 Gini 和 Information Gain 制作决策树分类器,并根据每次获得最大收益的最佳属性拆分树。但是,它每次都坚持相同的属性,只是简单地调整其question的值。这导致非常低的准确度,通常约为 30%,因为它只考虑了第一个属性。
寻找最佳分割
# Used to find the best split for data among all attributes
def split(r):
max_ig = 0
max_att = 0
max_att_val = 0
i = 0
curr_gini = gini_index(r)
n_att = len(att)
for c in range(n_att):
if c == 3:
continue
c_vals = get_column(r, c)
while i < len(c_vals):
# Value of the current attribute that is being tested
curr_att_val = r[i][c]
true, false = fork(r, c, curr_att_val)
ig = gain(true, false, curr_gini)
if ig > max_ig:
max_ig = ig
max_att = c
max_att_val = r[i][c]
i += 1
return max_ig, max_att, max_att_val
比较以根据真假将数据拆分为真
# Used to compare and test if the current row is greater than or equal to the test value
# in order to split up the data
def compare(r, test_c, test_val):
if r[test_c].isdigit():
return r[test_c] == test_val
elif float(r[test_c]) >= float(test_val):
return True
else:
return False
# Splits the data into two lists for the true/false results of the compare test
def fork(r, c, test_val):
true = []
false = []
for row in r:
if compare(row, c, test_val):
true.append(row)
else:
false.append(row)
return true, false
遍历树
def rec_tree(r):
ig, att, curr_att_val = split(r)
if ig == 0:
return Leaf(r)
true_rows, false_rows = fork(r, att, curr_att_val)
true_branch = rec_tree(true_rows)
false_branch = rec_tree(false_rows)
return Node(att, curr_att_val, true_branch, false_branch)