处理 4D numpy 数组(数组数组)。每个嵌套数组的形状(1, 100, 4)
trainset.shape
(159984, 1, 100, 4)
但随后在嵌套数组中,找到了一些nan
我想要处理的值。例如,第一个嵌套数组trainset
包含这样的:
trainset[0]
array([[[ 7.10669020e-02, 4.91383899e-03, -1.43700407e-02,
1.52228864e-04],
[ 7.59807410e-02, -9.45620170e-03, nan,
1.35892100e-04],
[ 6.65245393e-02, nan, nan,
8.98521456e-05],
[ nan, nan, nan,
1.41090006e-05],
[ nan, nan, nan,
6.68319391e-06],
[ nan, nan, nan,
-3.27272689e+01],
[ nan, nan, nan,
-1.09090911e+01],
[ nan, nan, nan,
8.25973981e+01],
[ nan, nan, nan,
1.12207785e+02],
[ nan, nan, nan,
1.65194797e+02],
[ nan, nan, nan,
2.25974015e+02],
[ nan, nan, nan,
2.78961026e+02],
[ 3.87926649e-03, 1.81274134e-04, -1.08764481e-03,
3.41298685e+02],
...
[ 4.06054062e-03, -9.06370679e-04, 1.30517379e-03,
3.10129855e+02]]])
如何检查所有数组trainset
的nan
值以及在哪里找到,用列的中值替换它?
编辑
使用:
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='median')
for data in trainset:
trainsfrom_data = imp_mean.fit(trainset)
ValueError: Found array with dim 3. Estimator expected <= 2.
给出指示的错误,如上。