对于我当前的分类任务,我对访问单个类的输入特征很感兴趣,这样每个类都只在其输入特征上进行训练(弱分类器),然后对它们进行集成。
我在访问这些功能时遇到了挑战。承认,我总是对多维数组感到困惑。我将举例说明我如何尝试在以下 MWE 中访问类功能。
import keras
import numpy as np
from sklearn.model_selection import train_test_split
Data = np.random.randn(20, 1, 5, 4)
x,y,z = np.repeat(0, 7), np.repeat(1, 7), np.repeat(2, 6)
labels = np.hstack((x,y,z))
LABELS= list(set(np.ndarray.flatten(labels)))
Class_num = len(LABELS)
trainX, testX, trainY, testY = train_test_split(Data,
labels, test_size=0.20, random_state=42)
#...to categorical
trainY = keras.utils.to_categorical(trainY, num_classes=Class_num)
testY = keras.utils.to_categorical(testY, num_classes=Class_num)
ensemble = []
for i in range(len(LABELS)):
print('Train on class ' ,LABELS[i])
sub_train = trainX[trainY == i]
sub_test = testX[testY == i]
#model fit follows...
错误:
Train on class 0
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-11-52ceeb9a1011> in <module>()
20 for i in range(len(LABELS)):
21 print('Train on class ' ,LABELS[i])
---> 22 sub_train = trainX[trainY == i]
23 sub_test = testX[testY == i]
24
IndexError: boolean index did not match indexed array along dimension 1; dimension is 1 but corresponding boolean dimension is 3
显然,我做错了数组索引。注意 的形状trainX/testX
。