2

我有几个大型 json 文件正在尝试加载到 pandas 数据框中。我发现在 Python 中处理大型 json 的一种典型方法是使用 ijson 模块。我拥有的 jsons 代表地理定位的推文 ID。我只对来自美国的推文 ID 感兴趣。json 数据如下所示:

{
  "tweet_id": "1223655173056356353",
  "created_at": "Sat Feb 01 17:11:42 +0000 2020",
  "user_id": "3352471150",
  "geo_source": "user_location",
  "user_location": {
    "country_code": "br"
  },
  "geo": {},
  "place": {
    
  },
  "tweet_locations": [
    {
      "country_code": "it",
      "state": "Trentino-Alto",
      "county": "Pustertal - Val Pusteria"
    },
    {
      "country_code": "us"
    },
    {
      "country_code": "ru",
      "state": "Voronezh Oblast",
      "county": "Petropavlovsky District"
    },
    {
      "country_code": "at",
      "state": "Upper Austria",
      "county": "Braunau am Inn"
    },
    {
      "country_code": "it",
      "state": "Trentino-Alto",
      "county": "Pustertal - Val Pusteria"
    },
    {
      "country_code": "cn"
    },
    {
      "country_code": "in",
      "state": "Himachal Pradesh",
      "county": "Jubbal"
    }
  ]
}

我将如何使用 ijson 仅从美国选择推文 ID,然后将这些美国 ID 放入数据框中?ijson 模块对我来说是新的,我不明白如何处理这个任务。更具体地说,我想获取所有的推文 ID,例如国家代码user_location是美国,或者国家代码tweet_locations是美国。感谢所有帮助!

4

1 回答 1

1

利用pandas.json_normalize

  • 将半结构化 JSON 数据规范化为平面表。
  • data是你的 JSON 字典
  • Pandas:索引和选择数据
  • 数据:带有地理信息的推文(英文)(选择 1)
    • 每个文件都包含多行字典。
    • 它们不在列表或元组内,因此读取每一行。
    • 的值tweet_locations是一个字典列表
    • , 的值user_location是一个字典
  • 对于tweet_locations空列表[]而不是 的情况,由于期望查看字段 [{}]的方式,该行不包含在数据框中。json_normalizemetadata
    • 发件人tweet_id不会包含在数据 {"tweet_id":"1256223765513584641","created_at":"Fri May 01 14:07:39 +0000 2020","user_id":"772487185031311360","geo_source":"user_location","user_location":{"country_code":"us"},"geo":{},"place":{},"tweet_locations":[]}
      • 这可以通过设置"tweet_locations" = [{}]when "tweet_locations":[]isTrue
import pandas as pd
import json
from pathlib import Path

# path to file, which contains the sample data at the bottom of this answer
file = Path('data/test.json')  # some path to your file

# load file
data = list()
with file.open('r') as f:
    for line in f:  # the file is rows of dicts that must be read 1 at a time
        data.append(json.loads(line))

# create dataframe
df = pd.json_normalize(data, 'tweet_locations', ['tweet_id', ['user_location', 'country_code']], errors='ignore')

# display(df.head())
  country_code              state         county    city             tweet_id user_location.country_code
0           us           Illinois  McLean County  Normal  1256223753220034566                        NaN
1           ke      Kiambu County            NaN     NaN  1256223748904161280                         ca
2           us           Illinois  McLean County  Normal  1256223744122593287                         us
3           th  Saraburi Province            NaN     NaN  1256223753463365632                        NaN
4           in              Assam          Lanka     NaN  1256223753463365632                        NaN                       br

# filter for US in the two columns
us = df[(df.country_code == 'us') | (df['user_location.country_code'] == 'us')]

# display(us)
   country_code          state          county    city             tweet_id user_location.country_code
0            us       Illinois   McLean County  Normal  1256223753220034566                        NaN
2            us       Illinois   McLean County  Normal  1256223744122593287                         us
15           us       Michigan  Sanilac County     NaN  1256338355106672640                         in
16           us  West Virginia     Clay County     NaN  1256338355106672640                         in
18           us        Florida   Taylor County     NaN  1256338355106672640                         in

# get unique tweet_id
df_tweet_ids = df.tweet_id.unique().tolist()

print(df_tweet_ids)
['1256223753220034566', '1256223744122593287', '1256338355106672640']

加载和解析所有 JSON 文件

  • 一次不会完全加载一个以上的文件
  • 使用pandas.concat组合数据框列表,us_data
# path to files
p = Path('c:/path_to_files')

# get of all json files
files = list(p.rglob('*.json'))

# parse files
us_data = list()
for file in files:
    data = list()
    with file.open('r', encoding='utf-8') as f:
        for line in f:
            data.append(json.loads(line))

        # create dataframe
        df = pd.json_normalize(data, 'tweet_locations', ['tweet_id', ['user_location', 'country_code']], errors='ignore')

        # filter for US in the two columns
        df = df[(df.country_code == 'us') | (df['user_location.country_code'] == 'us')]
        
        us_data.append(df)


# combine all data into one dataframe
us = pd.concat(us_data)

# delete objects that are no longer needed
del(data)
del(df)
del(us_data)

只解析tweet_id没有 pandas

  • 因为文件是字典行,ijson所以不需要。
  • 如所写,这将包括tweet_idif country_codeis 'us',即使tweet_locations是一个空列表。
    • tweet_idfrom将{"tweet_id":"1256223765513584641","created_at":"Fri May 01 14:07:39 +0000 2020","user_id":"772487185031311360","geo_source":"user_location","user_location":{"country_code":"us"},"geo":{},"place":{},"tweet_locations":[]}包含在数据中。
file = Path('data/en_geo_2020-05-01/en_geo_2020-05-01.json')
tweet_ids = list()
with file.open('r') as f:
    for line in f:
        line = json.loads(line)
        if line.get('user_location').get('country_code') == 'us':
            tweet_ids.append(line.get('tweet_id'))
        else:
            if line['tweet_locations']:  # if tweet_locations is a list and not empty (None)
                tweet_locations_country_code = [i.get('country_code') for i in line['tweet_locations']]  # get the coutry_code for each tweet
                if 'us' in tweet_locations_country_code:  # if 'us' is in the list
                    tweet_ids.append(line.get('tweet_id'))  # append

print(tweet_ids)
['1256223753220034566', '1256223744122593287', '1256338355106672640']

样本数据

  • 数据是文件中的字典行
{"tweet_id":"1256223753220034566","created_at":"Fri May 01 14:07:36 +0000 2020","user_id":"916540973190078465","geo_source":"tweet_text","user_location":{},"geo":{},"place":{},"tweet_locations":[{"country_code":"us","state":"Illinois","county":"McLean County","city":"Normal"}]}
{"tweet_id":"1256223748904161280","created_at":"Fri May 01 14:07:35 +0000 2020","user_id":"697426379583983616","geo_source":"user_location","user_location":{"country_code":"ca"},"geo":{},"place":{},"tweet_locations":[{"country_code":"ke","state":"Kiambu County"}]}
{"tweet_id":"1256223744122593287","created_at":"Fri May 01 14:07:34 +0000 2020","user_id":"1277481013","geo_source":"user_location","user_location":{"country_code":"us","state":"Florida"},"geo":{},"place":{},"tweet_locations":[{"country_code":"us","state":"Illinois","county":"McLean County","city":"Normal"}]}
{"tweet_id":"1256223753463365632","created_at":"Fri May 01 14:07:36 +0000 2020","user_id":"596005899","geo_source":"tweet_text","user_location":{},"geo":{},"place":{},"tweet_locations":[{"country_code":"th","state":"Saraburi Province"},{"country_code":"in","state":"Assam","county":"Lanka"},{"country_code":"cz","state":"Northeast","county":"okres \u00dast\u00ed nad Orlic\u00ed"},{"country_code":"lk"}]}
{"tweet_id":"1256223753115238406","created_at":"Fri May 01 14:07:36 +0000 2020","user_id":"139159502","geo_source":"user_location","user_location":{"country_code":"ca"},"geo":{},"place":{},"tweet_locations":[{"country_code":"ve"},{"country_code":"ca","state":"Nova Scotia","county":"Pictou County","city":"Diamond"},{"country_code":"my","state":"Selangor","city":"Kajang"}]}
{"tweet_id":"1256223748161757190","created_at":"Fri May 01 14:07:35 +0000 2020","user_id":"1655021437","geo_source":"user_location","user_location":{"country_code":"af","state":"Nangarhar","county":"Kot"},"geo":{},"place":{},"tweet_locations":[{"country_code":"cz","state":"Northeast","county":"okres \u00dast\u00ed nad Orlic\u00ed"},{"country_code":"cz","state":"Northeast","county":"okres \u00dast\u00ed nad Orlic\u00ed"},{"country_code":"gb","state":"England","county":"Gloucestershire"}]}
{"tweet_id":"1256223749214437380","created_at":"Fri May 01 14:07:35 +0000 2020","user_id":"3244990814","geo_source":"user_location","user_location":{"country_code":"se"},"geo":{},"place":{},"tweet_locations":[{"country_code":"cg","state":"Kouilou","county":"Pointe-Noire"},{"country_code":"cn"}]}
{"tweet_id":"1256338355106672640","created_at":"Fri May 01 21:43:00 +0000 2020","user_id":"1205700416123486208","geo_source":"user_location","user_location":{"country_code":"in","state":"Delhi"},"geo":{},"place":{},"tweet_locations":[{"country_code":"us","state":"Michigan","county":"Sanilac County"},{"country_code":"us","state":"West Virginia","county":"Clay County"},{"country_code":"de","state":"Baden-W\u00fcrttemberg","county":"Verwaltungsgemeinschaft Friedrichshafen"},{"country_code":"us","state":"Florida","county":"Taylor County"}]}
{"tweet_id":"1256223764980944904","created_at":"Fri May 01 14:07:39 +0000 2020","user_id":"1124447266205503488","geo_source":"none","user_location":{},"geo":{},"place":{},"tweet_locations":[]}
{"tweet_id":"1256223760765595650","created_at":"Fri May 01 14:07:38 +0000 2020","user_id":"909477905737990144","geo_source":"tweet_text","user_location":{},"geo":{},"place":{},"tweet_locations":[{"country_code":"lr","state":"Grand Bassa County","county":"District # 2"}]}
于 2020-07-07T23:34:47.383 回答