2

这是一个代码示例:

dataset = datasets.MNIST(root=root, train=istrain, transform=None)  #preserve raw img

print(type(dataset[0][0]))
# <class 'PIL.Image.Image'>

dataset = torch.utils.data.Subset(dataset, indices=SAMPLED_INDEX) # for resample

for ind in range(len(dataset)):
    img, label = dataset[ind] # <class 'PIL.Image.Image'> <class 'int'>/<class 'numpy.int64'>
    img.save(fp=os.path.join(saverawdir, f'{ind:02d}-{int(label):02d}.png'))

dataset.transform = transforms.Compose([
                transforms.RandomResizedCrop(image_size),
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
            ])
#transform for net forwarding

print(type(dataset[0][0]))
# expected <class 'torch.Tensor'>, however it's still <class 'PIL.Image.Image'>

由于数据集是随机重新采样的,我不想用 重新加载新数据集transform,而只是应用于transform已经存在的数据集。

感谢您的帮助:D

4

1 回答 1

1

您可以创建一个小型包装数据集,它将负责将给定的转换动态应用于底层数据集:

这是在 pytorch 论坛上发布的示例:https ://discuss.pytorch.org/t/torch-utils-data-dataset-random-split/32209/4

class MyDataset(Dataset):
    def __init__(self, subset, transform=None):
        self.subset = subset
        self.transform = transform
        
    def __getitem__(self, index):
        x, y = self.subset[index]
        if self.transform:
            x = self.transform(x)
        return x, y
        
    def __len__(self):
        return len(self.subset)

使用您的代码,它可能看起来像:

dataset = datasets.MNIST(root=root, train=istrain, transform=None)  #preserve raw img

print(type(dataset[0][0]))
# <class 'PIL.Image.Image'>

dataset = torch.utils.data.Subset(dataset, indices=SAMPLED_INDEX) # for resample

transformed_dataset = TransformDataset(dataset, transform=transforms.Compose([
                transforms.RandomResizedCrop(image_size),
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
            ]))
于 2021-11-26T20:38:33.937 回答