我目前正在使用 TensorFlow 1.x 中的 SSD MobileNetv2 运行实时对象检测器,并且想知道当视频流检测到其中一个类时是否有任何方法可以保存图像。
PATH_TO_FROZEN_GRAPH = 'path-to-inference-graph.pb'
PATH_TO_LABEL_MAP = 'path-to-label-map.pbtxt'
NUM_CLASSES = 4
cap = cv2.VideoCapture(0)
基本上,我已经构建了检测器来检测 4 个类,并希望在检测到其中一个类时保存图像(也许它可能会以一系列图像的形式出现,仍然可以)。
label_map = label_map_util.load_labelmap(PATH_TO_LABEL_MAP)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=3,
)
cv2.imshow('Detection', cv2.resize(image_np, (1200, 800)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
我如何实现这一目标?它还有其他变化吗?