0

感谢您的关注。我正在尝试使用 Spacy 网站上的代码训练自定义命名实体识别器。我的问题是,在我通过培训师运行我的示例后,它返回令牌,但没有实体。这是我的示例,保存在变量中to_train_ents

[('"We’re at the beginning of what we could do with laser ultrasound," says Brian W. Anthony, a principal research scientist in MIT’s Department of Mechanical Engineering and Institute for Medical Engineering and Science (IMES), a senior author on the paper.',
  {'entities': [(72, 88, 'PERSON')]}),
 ('Early concepts for noncontact laser ultrasound for medical imaging originated from a Lincoln Laboratory program established by Rob Haupt of the Active Optical Systems Group and Chuck Wynn of the Advanced Capabilities and Technologies Group, who are co-authors on the new paper along with Matthew Johnson.',
  {'entities': [(126, 135, 'PERSON'),
    (176, 186, 'PERSON'),
    (287, 302, 'PERSON')]}),
 ('From there, the research grew via collaboration with Anthony and his students, Xiang (Shawn) Zhang, who is now an MIT postdoc and is the paper’s first author, and recent doctoral graduate Jonathan Fincke, who is also a co-author.',
  {'entities': [(78, 97, 'PERSON'), (187, 202, 'PERSON')]})]

据我所知,它们的格式正确,可以传递给培训师。这是用于训练 NER 模型的代码,来自 spacy.io:

def main(model = None, output_dir = None, n_iter = 100):
    # Load the model, set up the pipeline and train the entity recognizer
    if model is not None:   # If model was specified...
        nlp = spacy.load(model)   # ...load the existing spaCy model
        pprint("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank("en")   # ...otherwise, create a blank language class
        print("Created blank 'en' model")

    # Create the built-in pipeline components and add them to the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if "ner" not in nlp.pipe_names:   # If Named Entity Recognition is not part of the pipeline...
        ner = nlp.create_pipe("ner")
        nlp.add_pipe(ner, last = True)   # ...add it to the pipeline
    else:
        ner = nlp.get_pipe("ner")

    # Add labels
    for _, annotations in to_train_ents:
        for ent in annotations.get("entities"):  # "get" is a way of retrieving items from dictionaries
            ner.add_label(ent[2])

    # Get names of other pipes to disable them during training (we want only NER)
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] # other_pipes is any pipe that is not NER
    with nlp.disable_pipes(*other_pipes):  # Train only NER
        # Reset and initialize the weights randomly - but only if we're training a new model
        if model is None:
            nlp.begin_training()
        for itn in range(n_iter):
            random.shuffle(to_train_ents)
            losses = {}
            # Batch up the examples using spaCy's minibatch
            batches = minibatch(to_train_ents, size = compounding(4.0, 32.0, 1.001))
            for batch in batches:
                texts, annotations = zip(*batch)
                nlp.update(
                texts,  # Batch of texts
                annotations,  # Batch of annotations
                drop = 0.5,  # Dropout - make it harder to memorize data (adjustable variable)
                losses = losses,
                )
            print("Losses", losses)

    # Test the trained model
    for text, _ in to_train_ents:
        doc = nlp(text)
        print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
        print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])

    # Save the model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)

    # Test the saved model
    print("Loading from", output_dir)
    nlp2 = spacy.load(output_dir)
    for text, _ in to_train_ents:
        doc = nlp2(text)
        print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
        print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])

我告诉这个函数使用英文模型并保存在输出目录'nih_ner'中:

main(model = 'en', output_dir = 'nih_ner')

结果如下:

"Loaded model 'en'"
Losses {'ner': 52.71057402440056}
Losses {'ner': 43.944127584481976}
Losses {'ner': 40.92080506101935}
~snip~
Losses {'ner': 8.647840025578502}
Losses {'ner': 0.001753763942560257}
Entities []
Tokens [('From', '', 2), ('there', '', 2), (',', '', 2), ('the', '', 2), ('research', '', 2), ('grew', '', 2), ('via', '', 2), ('collaboration', '', 2), ('with', '', 2), ('Anthony', '', 2), ('and', '', 2), ('his', '', 2), ('students', '', 2), (',', '', 2), ('Xiang', '', 2), ('(', '', 2), ('Shawn', '', 2), (')', '', 2), ('Zhang', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('now', '', 2), ('an', '', 2), ('MIT', '', 2), ('postdoc', '', 2), ('and', '', 2), ('is', '', 2), ('the', '', 2), ('paper', '', 2), ('’s', '', 2), ('first', '', 2), ('author', '', 2), (',', '', 2), ('and', '', 2), ('recent', '', 2), ('doctoral', '', 2), ('graduate', '', 2), ('Jonathan', '', 2), ('Fincke', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('also', '', 2), ('a', '', 2), ('co', '', 2), ('-', '', 2), ('author', '', 2), ('.', '', 2)]
Entities []
Tokens [('"', '', 2), ('We', '', 2), ('’re', '', 2), ('at', '', 2), ('the', '', 2), ('beginning', '', 2), ('of', '', 2), ('what', '', 2), ('we', '', 2), ('could', '', 2), ('do', '', 2), ('with', '', 2), ('laser', '', 2), ('ultrasound', '', 2), (',', '', 2), ('"', '', 2), ('says', '', 2), ('Brian', '', 2), ('W.', '', 2), ('Anthony', '', 2), (',', '', 2), ('a', '', 2), ('principal', '', 2), ('research', '', 2), ('scientist', '', 2), ('in', '', 2), ('MIT', '', 2), ('’s', '', 2), ('Department', '', 2), ('of', '', 2), ('Mechanical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Institute', '', 2), ('for', '', 2), ('Medical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Science', '', 2), ('(', '', 2), ('IMES', '', 2), (')', '', 2), (',', '', 2), ('a', '', 2), ('senior', '', 2), ('author', '', 2), ('on', '', 2), ('the', '', 2), ('paper', '', 2), ('.', '', 2)]
Entities []
Tokens [('Early', '', 2), ('concepts', '', 2), ('for', '', 2), ('noncontact', '', 2), ('laser', '', 2), ('ultrasound', '', 2), ('for', '', 2), ('medical', '', 2), ('imaging', '', 2), ('originated', '', 2), ('from', '', 2), ('a', '', 2), ('Lincoln', '', 2), ('Laboratory', '', 2), ('program', '', 2), ('established', '', 2), ('by', '', 2), ('Rob', '', 2), ('Haupt', '', 2), ('of', '', 2), ('the', '', 2), ('Active', '', 2), ('Optical', '', 2), ('Systems', '', 2), ('Group', '', 2), ('and', '', 2), ('Chuck', '', 2), ('Wynn', '', 2), ('of', '', 2), ('the', '', 2), ('Advanced', '', 2), ('Capabilities', '', 2), ('and', '', 2), ('Technologies', '', 2), ('Group', '', 2), (',', '', 2), ('who', '', 2), ('are', '', 2), ('co', '', 2), ('-', '', 2), ('authors', '', 2), ('on', '', 2), ('the', '', 2), ('new', '', 2), ('paper', '', 2), ('along', '', 2), ('with', '', 2), ('Matthew', '', 2), ('Johnson', '', 2), ('.', '', 2)]
Saved model to nih_ner
Loading from nih_ner
Entities []
Tokens [('From', '', 2), ('there', '', 2), (',', '', 2), ('the', '', 2), ('research', '', 2), ('grew', '', 2), ('via', '', 2), ('collaboration', '', 2), ('with', '', 2), ('Anthony', '', 2), ('and', '', 2), ('his', '', 2), ('students', '', 2), (',', '', 2), ('Xiang', '', 2), ('(', '', 2), ('Shawn', '', 2), (')', '', 2), ('Zhang', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('now', '', 2), ('an', '', 2), ('MIT', '', 2), ('postdoc', '', 2), ('and', '', 2), ('is', '', 2), ('the', '', 2), ('paper', '', 2), ('’s', '', 2), ('first', '', 2), ('author', '', 2), (',', '', 2), ('and', '', 2), ('recent', '', 2), ('doctoral', '', 2), ('graduate', '', 2), ('Jonathan', '', 2), ('Fincke', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('also', '', 2), ('a', '', 2), ('co', '', 2), ('-', '', 2), ('author', '', 2), ('.', '', 2)]
Entities []
Tokens [('"', '', 2), ('We', '', 2), ('’re', '', 2), ('at', '', 2), ('the', '', 2), ('beginning', '', 2), ('of', '', 2), ('what', '', 2), ('we', '', 2), ('could', '', 2), ('do', '', 2), ('with', '', 2), ('laser', '', 2), ('ultrasound', '', 2), (',', '', 2), ('"', '', 2), ('says', '', 2), ('Brian', '', 2), ('W.', '', 2), ('Anthony', '', 2), (',', '', 2), ('a', '', 2), ('principal', '', 2), ('research', '', 2), ('scientist', '', 2), ('in', '', 2), ('MIT', '', 2), ('’s', '', 2), ('Department', '', 2), ('of', '', 2), ('Mechanical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Institute', '', 2), ('for', '', 2), ('Medical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Science', '', 2), ('(', '', 2), ('IMES', '', 2), (')', '', 2), (',', '', 2), ('a', '', 2), ('senior', '', 2), ('author', '', 2), ('on', '', 2), ('the', '', 2), ('paper', '', 2), ('.', '', 2)]
Entities []
Tokens [('Early', '', 2), ('concepts', '', 2), ('for', '', 2), ('noncontact', '', 2), ('laser', '', 2), ('ultrasound', '', 2), ('for', '', 2), ('medical', '', 2), ('imaging', '', 2), ('originated', '', 2), ('from', '', 2), ('a', '', 2), ('Lincoln', '', 2), ('Laboratory', '', 2), ('program', '', 2), ('established', '', 2), ('by', '', 2), ('Rob', '', 2), ('Haupt', '', 2), ('of', '', 2), ('the', '', 2), ('Active', '', 2), ('Optical', '', 2), ('Systems', '', 2), ('Group', '', 2), ('and', '', 2), ('Chuck', '', 2), ('Wynn', '', 2), ('of', '', 2), ('the', '', 2), ('Advanced', '', 2), ('Capabilities', '', 2), ('and', '', 2), ('Technologies', '', 2), ('Group', '', 2), (',', '', 2), ('who', '', 2), ('are', '', 2), ('co', '', 2), ('-', '', 2), ('authors', '', 2), ('on', '', 2), ('the', '', 2), ('new', '', 2), ('paper', '', 2), ('along', '', 2), ('with', '', 2), ('Matthew', '', 2), ('Johnson', '', 2), ('.', '', 2)]

如您所见,模型将标记返回给我,但有空列表 [],识别的实体应该在哪里。关于为什么会发生这种情况的任何建议都会有所帮助。

再次感谢!

4

1 回答 1

1

问题在于训练数据中的开始结束字符索引。 必须使用从零开始的编号,而不是从1 开始的编号

使用从零开始的编号,字符串中第一个字符的索引为 0,第二个字符的索引为 1,等等。

以下代码显示您的偏移量使用基于 1 的编号

l = []
for a in to_train_ents:
    sentence = a[0]
    for b in a[1]['entities']:
        l.append( sentence[int(b[0]): int(b[1])])
print(l)
# [' Brian W. Anthon', ' Rob Haup', ' Chuck Wyn', ' Matthew Johnso', ' Xiang (Shawn) Zhan', ' Jonathan Finck']

使用从零开始的编号,训练数据变为:

to_train_ents = [('"We’re at the beginning of what we could do with laser ultrasound," says Brian W. Anthony, a principal research scientist in MIT’s Department of Mechanical Engineering and Institute for Medical Engineering and Science (IMES), a senior author on the paper.',
  {'entities': [(73, 89, 'PERSON')]}),
 ('Early concepts for noncontact laser ultrasound for medical imaging originated from a Lincoln Laboratory program established by Rob Haupt of the Active Optical Systems Group and Chuck Wynn of the Advanced Capabilities and Technologies Group, who are co-authors on the new paper along with Matthew Johnson.',
  {'entities': [(127, 136, 'PERSON'),
    (177, 187, 'PERSON'),
    (288, 303, 'PERSON')]}),
 ('From there, the research grew via collaboration with Anthony and his students, Xiang (Shawn) Zhang, who is now an MIT postdoc and is the paper’s first author, and recent doctoral graduate Jonathan Fincke, who is also a co-author.',
  {'entities': [(79, 98, 'PERSON'), (188, 203, 'PERSON')]})]

现在模型可以正确训练和预测:

Losses {'ner': 124.16665458679199}
Losses {'ner': 118.29711055755615}
Losses {'ner': 110.27205085754395}
Losses {'ner': 102.67473244667053}
Losses {'ner': 93.6117731332779}
Losses {'ner': 80.32513558864594}
...
Losses {'ner': 1.56542471502621e-07}
Losses {'ner': 2.071446077606498e-09}
Losses {'ner': 3.4424366409273253e-13}
Losses {'ner': 5.749029666370928e-09}
...
Entities [('Brian W. Anthony', 'PERSON')]
Entities [('Xiang (Shawn) Zhang', 'PERSON'), ('Jonathan Fincke', 'PERSON')]
Entities [('Rob Haupt', 'PERSON'), ('Chuck Wynn', 'PERSON'), ('Matthew Johnson', 'PERSON')]

于 2020-01-12T15:36:24.937 回答