我尝试在 CPLEX 12.8.0 上运行 MILP (OPL)。将此约束添加到模型并运行后,引擎日志如图所示,没有其他结果。我该如何解决这个问题?谢谢你。
EQ11 : // 1TruckPourAtSameCustomer&Time;
forall(c in customer, m in delivery : m > 1)
sum(k in truck, j in truck)
EP[k][j]*x[c][m-1][k][j] <=
sum(k in truck, j in truck)
SP[k][j]*x[c][m][k][j];
引擎日志
! ----------------------------------------------------------------------------
! Minimization problem - 94 variables, 143 constraints
! Presolve : 44 extractables eliminated
! TimeLimit = 600
! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)
! . Log search space : 2,101.1 (before), 2,101.1 (after)
! . Memory usage : 521.5 kB (before), 521.5 kB (after)
! Using parallel search with 16 workers.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed W Branch decision
0 94 -
+ New bound is 0
已编辑。
这是我的模型,预拌混凝土分配问题。它类似于作业车间调度问题。
using CP;
execute
{
cp.param.timelimit=600;
}
int c =...;
int m =...;
int k =...;
int j =...;
range customer = 1..c;
range delivery = 1..m;
range truck = 1..k;
range job = 1..j;
float Cost_Dist=...;
float Cost_Delay=...;
float Wash_T=...;
float Velocity=...;
float Pro_Rate=...;
float Demand[customer]=...;
float ETW[customer]=...;
float LTW[customer]=...;
float Unload_W[customer]=...;
float Unload_R[customer]=...;
float Dist_C[customer]=...;
float CAP[truck]=...;
float Access[customer][truck]=...;
dvar int+ Delay[customer];
dvar int+ Travel_C[customer];
dvar int+ SL[truck][job];
dvar int+ Dep_P[truck][job];
dvar int+ Arr_C[truck][job];
dvar int+ SP[truck][job];
dvar int+ EP[truck][job];
dvar int+ Arr_P[truck][job];
dvar int+ LQ[truck][job];
dvar int+ LT[truck][job];
dvar int+ UT[truck][job];
dvar boolean x[customer][delivery][truck][job];
//////////////////////////////////////////////////////////////////////;
minimize (Cost_Dist*2*(sum(c in customer, m in delivery, k in truck, j in job)
Dist_C[c]*x[c][m][k][j]))+
(Cost_Delay* (sum(c in customer)
Delay[c]));
//////////////////////////////////////////////////////////////////////;
subject to {
EQ2 : //AssignmentCM
forall(c in customer, m in delivery)
sum(k in truck, j in job)
x[c][m][k][j] <= 1 ;
EQ3 : //AssignmentKJ
forall(k in truck, j in job)
sum(c in customer, m in delivery)
x[c][m][k][j] <= 1 ;
EQ4 : //Access
forall(c in customer, m in delivery,k in truck, j in job)
x[c][m][k][j] <= Access[c][k];
EQ5 : //PrecedenceCM
forall(c in customer, m in delivery : m > 1)
sum(k in truck, j in job)
x[c][m][k][j] <=
sum(k in truck, j in job)
x[c][m-1][k][j];
EQ6 : //PrecedenceKJ
forall(k in truck, j in job : j > 1)
sum(c in customer, m in delivery)
x[c][m][k][j] <=
sum(c in customer, m in delivery)
x[c][m][k][j-1];
EQ7 : //Demand <= Supply
forall(c in customer)
Demand[c] <=
sum(m in delivery,k in truck, j in job)
LQ[k][j]*x[c][m][k][j];
EQ8 : //Load <= Capacity
forall(k in truck, j in job)
LQ[k][j] <= CAP[k];
EQ9 : //EarliestTimeWindow
forall(c in customer, m in delivery : m == 1)
ETW[c] <=
sum(k in truck, j in job)
SP[k][j]*x[c][m][k][j];
EQ11 : // 1TruckPourAtSameCustomerTime;
forall(c in customer, m in delivery : m > 1)
sum(k in truck, j in truck)
EP[k][j]*x[c][m-1][k][j] <=
sum(k in truck, j in truck)
SP[k][j]*x[c][m][k][j];
//-----------------TruckTimelineConstraints-----------------//
EQ14 : //StartLoad
forall(k in truck, j in job : j > 1)
SL[k][j] >= Arr_P[k][j-1];
EQ15 : //DepartPlant
forall(k in truck, j in job)
Dep_P[k][j] == SL[k][j]+LT[k][j];
EQ16 : //ArriveCustomer
forall(k in truck, j in job)
Arr_C[k][j] == Dep_P[k][j]+
sum(c in customer, m in delivery)
Travel_C[c]*x[c][m][k][j];
EQ17 : //StartPour
forall(k in truck, j in job)
SP[k][j] == Arr_C[k][j]+
sum(c in customer, m in delivery)
Unload_W[c]*x[c][m][k][j];
EQ18 : //EndPour
forall(k in truck, j in job)
EP[k][j] == SP[k][j]+UT[k][j];
EQ19 : //ArrivePlant
forall(k in truck, j in job)
Arr_P[k][j] == EP[k][j]+
sum(c in customer, m in delivery)
Travel_C[c]*x[c][m][k][j];
//-----------------VariableCalculations-----------------//
EQ21 : //TravelTimeP-C
forall(c in customer)
Travel_C[c] == ceil(Dist_C[c]/Velocity);
EQ22 : //ConcreteLoadingTime
forall(k in truck, j in job)
LT[k][j] == ceil(LQ[k][j]/Pro_Rate);
EQ23 : //ConcreteUnloadingTime
forall(k in truck, j in job)
UT[k][j] == ceil(
sum(c in customer, m in delivery)
(LQ[k][j]/Unload_R[c]*x[c][m][k][j]));
EQ24 : //Delay
forall(c in customer, m in delivery)
Delay[c] == maxl(0,ceil(sum(k in truck, j in job)
(Arr_C[k][j]-(LTW[c]*x[c][m][k][j]))));
}
和数据。
c=2;
m=3;
k=2;
j=3;
Cost_Dist=10;
Cost_Delay=10;
Wash_T=5;
Velocity=1.3;
Pro_Rate=1;
Demand=[15 15];
ETW=[60 90];
LTW=[300 600];
Unload_W=[5 5];
Unload_R=[0.5 0.5];
Dist_C=[5 10];
CAP=[5 5];
Access=
[[1 1]
[1 1]];