我正在尝试使用cProfile
和显示结果来分析我的 python 脚本pstats
。特别是,我正在尝试使用该pstats
函数p.sort_stats('time').print_callers(20)
按时间仅打印前 20 个函数,如文档中所述。
我希望只获得前 20 个结果(按时间排序的函数及其调用函数),相反,我得到一个看似未经过滤的 1000 多个函数列表,这些函数完全使我的终端饱和(因此我估计超过 1000 个函数)。
为什么我的限制参数(即20
)被忽略,print_callers()
我该如何解决这个问题?
我已经尝试查找答案,但找不到。我试图创建一个最小的可重现示例,但是当我这样做时,我无法重现该问题(即它工作正常)。
我的分析代码是:
import cProfile
import pstats
if __name__ == '__main__':
cProfile.run('main()', 'mystats')
p = pstats.Stats('mystats')
p.sort_stats('time').print_callers(20)
我试图避免发布我的完整代码,所以如果其他人以前遇到过这个问题,并且可以在没有看到我的完整代码的情况下回答,那就太好了。
非常感谢您提前。
编辑 1: 部分输出:
Ordered by: internal time
List reduced from 1430 to 1 due to restriction <1>
Function was called by...
ncalls tottime cumtime
{built-in method builtins.isinstance} <- 2237 0.000 0.000 <frozen importlib._bootstrap>:997(_handle_fromlist)
9 0.000 0.000 <frozen importlib._bootstrap_external>:485(_compile_bytecode)
44 0.000 0.000 <frozen importlib._bootstrap_external>:1117(_get_spec)
4872 0.001 0.001 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\_strptime.py:321(_strptime)
5 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\abc.py:196(__subclasscheck__)
26 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\calendar.py:58(__getitem__)
14 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\calendar.py:77(__getitem__)
2 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\distutils\version.py:331(_cmp)
20 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\enum.py:797(__or__)
362 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\enum.py:803(__and__)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\inspect.py:73(isclass)
30 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\json\encoder.py:182(encode)
2 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:34(_get_bothseps)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:75(join)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:122(splitdrive)
3 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:309(expanduser)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\os.py:728(check_str)
44 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\re.py:249(escape)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\re.py:286(_compile)
609 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\dateutil\parser\_parser.py:62(__init__)
1222 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\_methods.py:48(_count_reduce_items)
1222 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\_methods.py:58(_mean)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\arrayprint.py:834(__init__)
1393 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:1583(ravel)
1239 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:1966(sum)
...