我想使用 GPT-2 来制作文本分类器模型。通过 GPT-2 提取特征后,我不确定应该添加什么头。例如,我有一个序列。
import pytorch_transformers as pt
import torch
text=test.iloc[1,1]
text
'If a fire wanted fanning, it could readily be fanned with a newspaper, and as the government grew weaker, I have no doubt that leather and iron acquired durability in proportion, for, in a very short time, there was not a pair of bellows in all Rotterdam that ever stood in need of a stitch or required the assistance of a hammer.'
len(text)
74
tokenizer = pt.GPT2Tokenizer.from_pretrained('gpt2')
model = pt.GPT2Model.from_pretrained('gpt2')
zz = tokenizer.tokenize(text)
z1=torch.tensor([tokenizer.convert_tokens_to_ids(zz)])
z1
tensor([[ 1532, 257, 2046, 2227, 4336, 768, 11, 340, 714, 14704,
307, 277, 3577, 351, 257, 7533, 11, 290, 355, 262,
1230, 6348, 17642, 11, 314, 423, 645, 4719, 326, 11620,
290, 6953, 9477, 26578, 287, 9823, 11, 329, 11, 287,
257, 845, 1790, 640, 11, 612, 373, 407, 257, 5166,
286, 8966, 1666, 287, 477, 18481, 353, 11043, 326, 1683,
6204, 287, 761, 286, 257, 24695, 393, 2672, 262, 6829,
286, 257, 15554, 13]])
output,hidden=model(z1)
ouput.shape
torch.Size([1, 74, 768])
GPT2 的输出对我来说是 nxmx 768,其中 n 是批量大小,m 是序列中的标记数(例如,我可以填充/截断为 128。),所以我不能像论文所说的那样做一个分类任务只是在尾部添加一个全连接层。我在谷歌上搜索,很少提到 GPT-2 分类任务。我不确定什么是正确的。我应该在全连接层或其他东西之前做扁平化/最大池化/平均池化吗?