1

我试图找到高斯分布的对数最大似然估计,以估计参数。我知道 Matlab 有一个内置函数,它通过拟合高斯分布来做到这一点,但我需要用 logMLE 来做到这一点,以便以后将此方法扩展到其他分布。所以这里是高斯分布的对数似然函数: Gaussian Log MLE

我使用这段代码用 fminsearch 估计了一组变量 (r) 的参数。但我的搜索没有覆盖,我不完全理解问题出在哪里:

clear
clc
close all
%make random numbers with gaussian dist
r=[2.39587291079469
1.57478022109723
-0.442284350603745
4.39661178526569
7.94034385633171
7.52208574723178
5.80673144943155
-3.11338531920164
6.64267230284774
-2.02996003947964];
% mu=2 sigma=3

%introduce f
f=@(x,r)-(sum((-0.5.*log(2*3.14.*(x(2))))-(((r-(x(2))).^2)./(2.*(x(1))))))
fun = @(x)f(x,r);

% starting point
x0 = [0,0];
 [y,fval,exitflag,output] = fminsearch(fun,x0)


f = 
    @(x,r)-(sum((-0.5.*log(2*3.14.*(x(2))))-(((r-(x(2))).^2)./(2.*(x(1))))))


Exiting: Maximum number of function evaluations has been exceeded
         - increase MaxFunEvals option.
         Current function value: 477814.233176 
y = 1×2    
1.0e+-3 *

    0.2501   -0.0000

fval = 4.7781e+05 + 1.5708e+01i
exitflag = 0
output = 
    iterations: 183
     funcCount: 400
     algorithm: 'Nelder-Mead simplex direct search'
       message: 'Exiting: Maximum number of function evaluations has been exceeded↵         - increase MaxFunEvals option.↵         Current function value: 477814.233176 ↵' 
4

1 回答 1

0

重写 f 如下:

在此处输入图像描述

function y = g(x, r)

     n = length(r);

     log_part = 0.5.*n.*log(x(2).^2);

     sum_part = ((sum(r-x(1))).^2)./(2.*x(2).^2);

     y = log_part + sum_part;

 end

使用fmincon而不是fminsearch因为标准偏差始终是一个正数。

标准偏差下限设置为零0


整个代码如下:

%make random numbers with gaussian dist
r=[2.39587291079469
1.57478022109723
-0.442284350603745
4.39661178526569
7.94034385633171
7.52208574723178
5.80673144943155
-3.11338531920164
6.64267230284774
-2.02996003947964];
% mu=2 sigma=3

fun = @(x)g(x, r);
% starting point
x0 = [0,0];

% borns 
lb = [-inf, 0];
ub = [inf, inf];
[y, fval] = fmincon(fun,x0,[],[],[],[],lb,ub, []);
function y = g(x, r)

     n = length(r);

     log_part = 0.5.*n.*log(x(2).^2);

     sum_part = ((sum(r-x(1))).^2)./(2.*x(2).^2);

     y = log_part + sum_part;
end

解决方案

y = [3.0693    0.0000]

为了更好的估计mle()直接使用

代码很简单:

y = mle(r,'distribution','normal')

解决方案

y = [3.0693    3.8056]
于 2019-07-04T06:18:11.247 回答