1

将“数据”向量中的大量略有不同的餐厅名称匹配到适当的“匹配”向量:

包中的stringdistmatrix功能stringdist很棒,但是内存不足几个 10k x 10k 并且我的数据更大。

尝试as(stringdistmatrix(data, match),'sparseMatrix')会给出希望的结果,但内存不足。因此,我想使用sparseMatrix(i,j,x,dims,dimnames)withx计算adist()或类似的字符串距离显式索引对,希望它适合内存。

R

data <- c("McDonalds", "MacDonalds", "Mc Donald's", "Wendy's", "Wendys", "Wendy", 
          "Chipotle", "Chipotle's")

match <- c("McDonalds", "Wendys", "Chipotle")

试:

library(Matrix)
library(stringdist)

idx <- expand.grid(a=data,b=match)
idx$row <- match(idx$a,idx$b)
idx$col <- match(idx$b,idx$a)

library(Matrix)
sparseMatrix(i=idx$row, 
             j=idx$col,
             x=ifthen(adist(data,match)<2,1,0),
             dims=c(7,3),
             dimnames = list(data, match))

希望输出匹配:

library(stringdist)
as(ifelse(stringdistmatrix(data,match)<2,1,0),'sparseMatrix')
4

1 回答 1

2

如果我正确理解您的问题,您的任务是将脏字符串与干净字符串匹配。你不需要整个矩阵(它确实不会稀疏)。相反,您可以使用amatch.

library(stringdist)
data <- c("McDonalds", "MacDonalds", "Mc Donald's", "Wendy's", "Wendys", "Wendy", 
          "Chipotle", "Chipotle's")
match <- c("McDonalds", "Wendys", "Chipotle")
i <- amatch(data, match, method="osa",maxDist=2)
data.frame(data=data, matched_data = match[i], stringsAsFactors = FALSE)

         data matched_data
1   McDonalds    McDonalds
2  MacDonalds    McDonalds
3 Mc Donald's    McDonalds
4     Wendy's       Wendys
5      Wendys       Wendys
6       Wendy       Wendys
7    Chipotle     Chipotle
8  Chipotle's     Chipotle
于 2019-07-26T11:42:48.730 回答