我正在尝试使用简单的直线y=mx+c
类型来拟合一些合成数据parallel-tempered mcmc
。我的目标是能够理解如何使用它,以便以后可以应用于一些更复杂的模型。我正在尝试的示例是在一个简单的 emcee 代码中已经完成的复制:http:
//dfm.io/emcee/current/user/line/
但我不想使用 mcmc,而是使用并行处理 mcmc :
http ://dfm.io/emcee/current/user/pt/
这是一个工作代码:
import numpy as np
from emcee import PTSampler
import emcee
# Choose the "true" parameters.
m_true = -0.9594
b_true = 4.294
f_true = 0.534
# Generate some synthetic data from the model.
N = 50
x = np.sort(10*np.random.rand(N))
yerr = 0.1+0.5*np.random.rand(N)
y = m_true*x+b_true
y += np.abs(f_true*y) * np.random.randn(N)
y += yerr * np.random.randn(N)
def lnlike(theta, x, y, yerr):
m, b, lnf = theta
model = m * x + b
inv_sigma2 = 1.0/(yerr**2 + model**2*np.exp(2*lnf))
return -0.5*(np.sum((y-model)**2*inv_sigma2 - np.log(inv_sigma2)))
def lnprior(theta):
m, b, lnf = theta
if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0:
return 0.0
return -np.inf
def lnprob(theta, x, y, yerr):
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + lnlike(theta, x, y, yerr)
import scipy.optimize as op
nll = lambda *args: -lnlike(*args)
result = op.minimize(nll, [m_true, b_true, np.log(f_true)], args=(x, y, yerr))
m_ml, b_ml, lnf_ml = result["x"]
init = [0.5, m_ml, b_ml, lnf_ml]
ntemps = 10
nwalkers = 100
ndim = 3
from multiprocessing import Pool
pos = np.random.uniform(low=-1, high=1, size=(ntemps, nwalkers, ndim))
for i in range(ntemps):
#initialize parameters near scipy optima
pos[i:,] = np.array([result["x"] + 1e-4*np.random.randn(ndim) for i in range(nwalkers)])
pool = Pool(processes=4)
sampler=PTSampler(ntemps,nwalkers, ndim, lnlike, lnprior, loglargs=(x, y, yerr), pool=pool)# args=(x, y, yerr))
#burn-in
sampler.run_mcmc(pos, 1000)
sampler.reset()
sampler.run_mcmc(pos, 10000, thin=10)
samples = sampler.chain.reshape((-1, ndim))
print('Number of posterior samples is {}'.format(samples.shape[0]))
#print best fit value together with errors
print(map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]),
zip(*np.percentile(samples, [16, 50, 84],
axis=0))))
import corner
fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"],
truths=[m_true, b_true, np.log(f_true)])
fig.savefig("triangle.png")
运行此代码时唯一的问题是我得到了远离真实值的最佳参数值。增加步行者或样本的数量在任何意义上都没有帮助。谁能告诉我为什么tempered-mcmc
不在这里工作?
更新:
我发现了一个有用的包ptemcee
(https://pypi.org/project/ptemcee/#description),虽然这个包的文档不存在。似乎这个包可能很有用,任何关于如何用这个包实现相同的线性拟合的帮助也将不胜感激。