内核在运行一些代码后死亡
我尝试运行代码以使用生成器生成示例图像 我尝试更新 conda 和 Jupiter 但它们都不起作用
我一直在观察 GPU 的内存使用情况,但它并没有那么多使用 GPU
张量流2.0,ubuntu 18.10,cuda 10.0
python 3.5,
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
generator = make_generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
AVX2 FMA 2019-04-18 10:20:21.107510: I tensorflow/compiler/xla/service/service.cc:168] XLA 服务 0x55de6ead0990 在平台 CUDA 上执行计算。设备:2019-04-18 10:20:21.107562:I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor 设备 (0):TITAN Xp,计算能力 6.1 2019-04-18 10:20:21.127890 :I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU 频率:3493050000 Hz 2019-04-18 10:20:21.129460:I tensorflow/compiler/xla/service/service.cc:168] XLA 服务 0x55de6eed7eb0在平台主机上执行计算。设备:2019-04-18 10:20:21.129503:I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor 设备 (0):, 2019-04-18 10:20:21.129616:I tensorflow/core /common_runtime/gpu/gpu_device.cc:1712] 添加可见 gpu 设备:0 2019-04-18 10:20:21.129722: