我正在尝试在 Tensorflow 上实现一个简单的 LSTM 单元,以将其性能与我之前实现的另一个单元进行比较。
x = tf.placeholder(tf.float32,[BATCH_SIZE,SEQ_LENGTH,FEATURE_SIZE])
y = tf.placeholder(tf.float32,[BATCH_SIZE,SEQ_LENGTH,FEATURE_SIZE])
weights = { 'out': tf.Variable(tf.random_normal([FEATURE_SIZE, 8 * FEATURE_SIZE, NUM_LAYERS]))}
biases = { 'out': tf.Variable(tf.random_normal([4 * FEATURE_SIZE, NUM_LAYERS]))}
def RNN(x, weights, biases):
x = tf.unstack(x, SEQ_LENGTH, 1)
lstm_cell = tf.keras.layers.LSTMCell(NUM_LAYERS)
outputs = tf.keras.layers.RNN(lstm_cell, x, dtype=tf.float32)
return outputs
pred = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
我使用了我在 GitHub 上找到的示例并尝试对其进行更改以获得我想要的行为,但我收到了以下错误消息:
TypeError: Failed to convert object of type <class 'tensorflow.python.keras.layers.recurrent.RNN'> to Tensor. Contents: <tensorflow.python.keras.layers.recurrent.RNN object at 0x7fe437248710>. Consider casting elements to a supported type.