我正在从 keras 模型创建一个估计器,如下所示
estimator = tf.keras.estimator.model_to_estimator(keras_model=keras_model, model_dir=model_dir)
我的模型就像
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
main_input (InputLayer) (None, 8) 0
_________________________________________________________________
dense1 (Dense) (None, 50) 450
_________________________________________________________________
dense2 (Dense) (None, 40) 2040
_________________________________________________________________
dense3 (Dense) (None, 30) 1230
_________________________________________________________________
dense4 (Dense) (None, 20) 620
_________________________________________________________________
dense5 (Dense) (None, 10) 210
_________________________________________________________________
main_output (Dense) (None, 8) 88
=================================================================
Total params: 4,638
Trainable params: 4,638
Non-trainable params: 0
然后我尝试为估计器创建一个 input_fn
def train_input_fn():
dataset = csv_input_fn(training_data_path)
dataset = dataset.batch(128).repeat(-1)
train_iterator = dataset.make_one_shot_iterator()
features, labels = train_iterator.get_next()
return features, labels
def csv_input_fn(csv_path, batch_size=None, buffer_size=None, repeat=None):
dataset = tf.data.TextLineDataset(filenames).skip(0)
dataset = dataset.map(_parse_line)
if buffer_size is not None:
dataset = dataset.shuffle(buffer_size=10000)
if batch_size is not None:
dataset = dataset.batch(batch_size)
if buffer_size is not None:
dataset = dataset.repeat(repeat)
return dataset
def _parse_line(line):
fields = tf.decode_csv(line, FIELD_DEFAULTS)
features = dict(zip(COLUMNS, fields))
features.pop("DATE")
label = features.pop("LABEL")
return features, label
但是有一个错误
KeyError: "The dictionary passed into features does not have the expected inputs keys defined in the keras model.
Expected keys: {'main_input'}
features keys: {'TURNOVER', 'VOLUME', 'CLOSE', 'P_CHANGE', 'OPEN', 'PRICE_CHANGE', 'LOW', 'HIGH'}
Difference: {'VOLUME', 'CLOSE', 'LOW', 'P_CHANGE', 'main_input', 'OPEN', 'PRICE_CHANGE', 'TURNOVER', 'HIGH'}"
看起来 {'main_input'} 是 keras 模型中的输入名称 {'TURNOVER', 'VOLUME', 'CLOSE', 'P_CHANGE', 'OPEN', 'PRICE_CHANGE', 'LOW', 'HIGH'} 是特征来自我的数据集,因此它们彼此不匹配。有谁知道如何转换这个?