4

几天来,我一直在努力解决这个问题。我正在使用 tensorflow-gpu v1.13.1,我只能找到 2 个其他线程,甚至提到了类似的错误。

重新创建错误:

import numpy as np
import tensorflow as tf
from tensorflow import keras
def createModel():
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Dense(5, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dense(5, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dense(1, activation=tf.nn.sigmoid))
    model.compile(optimizer='sgd',
                  loss='mean_squared_error')
    return model

def array_generator():
    yield np.array([0.1,0.2,0.3,0.4,0.5]), np.array([1])

model=createModel()
model.fit_generator(array_generator(), epochs=5, steps_per_epoch=5)

我正在尝试制作一个神经网络来将文件分类为恶意或非恶意。原始源码,X_train、y_train、X_test、y_test都是numpy数组。

import tensorflow as tf
import numpy as np
import ember
import random
X_train, y_train, X_test, y_test = ember.read_vectorized_features("C:\\Users\Cody\Desktop\synopsys\data\ember")
metadata_dataframe = ember.read_metadata("C:\\Users\Cody\Desktop\synopsys\data\ember")


#load testing set
def loadTestSet():
    X_test_tf = tf.convert_to_tensor(X_test, np.float32)
    y_test_tf = tf.convert_to_tensor(y_test, np.float32)
    return X_test_tf, y_test_tf

#create compiled keras model
def createModel():
    model = tf.keras.models.Sequential()
    #ADD L2 REGULARIZATION LATER
    model.add(tf.keras.layers.Dense(7351, activation=tf.nn.relu))
    '''model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(4096, activation=tf.nn.relu))'''
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(4096, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(4096, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(2048, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(2048, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(2048, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(1024, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(1024, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(1024, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(1024, activation=tf.nn.relu))
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(tf.keras.layers.Dense(1, activation=tf.nn.sigmoid))
    #adam metrhod for stochastic gradient descent
    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    return model

def generate_arrays(features, labels, batch_size):
    batch_features=np.zeros((batch_size, 7351), dtype=np.float32)
    batch_labels=np.zeros((batch_size, 1), dtype=np.float32)
    while True:
        for i in range(batch_size):
            index=random.choice(900000,1)
            batch_features=X_train[index]
            batch_labels=y_train[index]
        yield batch_features, batch_labels

print('creating model')
model=createModel()
print('training model')
model.fit_generator(generate_arrays(X_train, y_train, 500), epochs=10, steps_per_epoch=1800)
print('testing model')
X_test_tf, y_test_tf = loadTestSet()
model.evaluate(X_test_tf, y_test_tf)

这是我的错误:

回溯(最后一次调用):文件“C:/Users/Cody/Desktop/synopsys/train.py”,第 76 行,在 model.fit_generator(generate_arrays(X_train, y_train, 500), epochs=10, steps_per_epoch=1800 ) 文件“C:\Users\Cody\AppData\Local\conda\conda\envs\emberenv\lib\site-packages\tensorflow\python\keras\engine\training.py”,第 1426 行,在 fit_generator initial_epoch=initial_epoch 中)文件“C:\Users\Cody\AppData\Local\conda\conda\envs\emberenv\lib\site-packages\tensorflow\python\keras\engine\training_generator.py”,第 125 行,model_iteration 模型、模式、class_weight =class_weight) _make_execution_function 模型中的文件“C:\Users\Cody\AppData\Local\conda\conda\envs\emberenv\lib\site-packages\tensorflow\python\keras\engine\training_generator.py”,第 427 行。_make_fit_function() 文件“C:\Users\Cody\AppData\Local\conda\conda\envs\emberenv\lib\site-packages\tensorflow\python\keras\engine\training.py”,第 1926 行,在 _make_fit_function '_fit_function ', [self.total_loss] + metrics_tensors) AttributeError: 'Sequential' 对象没有属性 'total_loss'

非常感谢任何帮助,我已经被困在这个问题上太久了。

4

2 回答 2

2

我正在帮助一个朋友解决类似的问题(AttributeError:'Sequential' 对象没有属性'total_loss')。经过几个小时的故障排除,我们通过将 tensorflow 升级到 2.0.0-alpha0 解决了这个问题。我们还必须做一个“点安装枕头”。

于 2019-04-05T21:02:53.950 回答
1

对于过时版本的 Keras/Tensorflow https://github.com/keras-team/keras/issues/10323,这看起来像是一个已知问题

请将两者都升级到最新版本。

于 2019-03-11T16:44:09.917 回答