2

我正在尝试在 python 中进行简单的线性回归,其中 x 变量是项目描述的字数,y 值是资金速度(以天为单位)。

我有点困惑,因为测试的均方根误差 (RMSE) 为 13.77,训练数据为 13.88。首先,RMSE 不应该在 0 和 1 之间吗?其次,测试数据的 RMSE 不应该高于训练数据吗?所以我想,我做错了什么,但不确定错误在哪里。

另外,我需要知道回归的权重系数,但不幸的是不知道如何打印它,因为它隐藏在 sklearn 方法中。任何人都可以在这里帮忙吗?

这是我到目前为止所拥有的:

import numpy as np
import matplotlib.pyplot as plt
import sqlite3
from sklearn.model_selection import train_test_split
from sklearn import linear_model

con = sqlite3.connect('database.db')
cur = con.cursor()

# y-variable in regression is funding speed ("DAYS_NEEDED")    
cur.execute("SELECT DAYS_NEEDED FROM success")
y = cur.fetchall()                  # list of tuples
y = np.array([i[0] for i in y])     # list of int   # y.shape = (1324476,)

# x-variable in regression is the project description length ("WORD_COUNT")
cur.execute("SELECT WORD_COUNT FROM success")
x = cur.fetchall()
x = np.array([i[0] for i in x])     # list of int   # x.shape = (1324476,)

# Get the train and test data split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

# Fit a model
lm = linear_model.LinearRegression()
x_train = x_train.reshape(-1, 1)    # new shape: (1059580, 1)
y_train = y_train.reshape(-1, 1)    # new shape: (1059580, 1)
model = lm.fit(x_train, y_train)
x_test = x_test.reshape(-1, 1)      # new shape: (264896, 1)
predictions_test = lm.predict(x_test)
predictions_train = lm.predict(x_train)

print("y_test[5]: ", y_test[5])     # 14
print("predictions[5]: ", predictions_test[5]) # [ 12.6254537]

# Calculate the root mean square error (RMSE) for test and training data
N = len(y_test)
rmse_test = np.sqrt(np.sum((np.array(y_test).flatten() - np.array(predictions_test).flatten())**2)/N)
print("RMSE TEST: ", rmse_test)     # 13.770731326

N = len(y_train)
rmse_train = np.sqrt(np.sum((np.array(y_train).flatten() - np.array(predictions_train).flatten())**2)/N)
print("RMSE train: ", rmse_train)   # 13.8817814595

任何帮助深表感谢!谢谢!

4

1 回答 1

3
  1. RMSE 与因变量具有相同的单位。这意味着,如果您尝试预测的变量在 0 到 100 之间变化,则 99 的 RMSE 很糟糕!如果说您对 0 到 100 范围内的数据的 RMSE 为 5,那么 RMSE 为 5 是惊人的。但是,如果从 1 到 10 的数据的 RMSE 为 5,那么您就有问题了!我希望这能够把要点带回家。

  2. 由于您的训练和测试的 RMSE 相似,因此请拍拍自己的后背!你真的做得很好!如果测试的 RMSE > 训练,则您稍微过拟合。

根据 Umang 在评论中所说的,您使用model.coef_model.intercept_打印模型计算出的最佳权重。

于 2018-06-26T23:27:44.373 回答