我从 Pyomo 开始,对这个包有一些具体的问题。我正在使用 DAE-Toolbox 并希望使用此工具箱进行模拟和参数估计。这是我的代码:
DAE 模型脚本(来自 pyomo-examples):
from pyomo.environ import *
from pyomo.dae import *
model = ConcreteModel()
time_vec = [0,1,2,3,4,5,6,7,8,9,10,11,12,13]
model.t = ContinuousSet(initialize= time_vec)
meas_time_vec = [1,2,3,5]
model.MEAS_t = Set(within=model.t,initialize =meas_time_vec) # Measurement times, must be subset of t
meas_data_vec ={1:0.264,2:0.594,3: 0.801,5: 0.959}
model.x1_meas = Param(model.MEAS_t, initialize=meas_data_vec)
model.x1 = Var(model.t, initialize =0)
model.x2 = Var(model.t, initialize=1)
model.p1 = Var(bounds=(-1.5,1.5))
model.p2 = Var(bounds=(-1.5,1.5))
model.x1dot = DerivativeVar(model.x1,wrt=model.t)
model.x2dot = DerivativeVar(model.x2)
def _init_conditions(model):
yield model.x1[0] == model.p1
yield model.x2[0] == model.p2
model.init_conditions = ConstraintList(rule=_init_conditions)
# Alternate way to declare initial conditions
#def _initx1(model):
# return model.x1[0] == model.p1
#model.initx1 = Constraint(rule=_initx1)
#def _initx2(model):
# return model.x2[0] == model.p2
#model.initx2 = Constraint(rule=_initx2)
def _x1dot(model,i):
return model.x1dot[i] == model.x2[i]
model.x1dotcon = Constraint(model.t, rule=_x1dot)
def _x2dot(model,i):
return model.x2dot[i] == 1-2*model.x2[i]-model.x1[i]
model.x2dotcon = Constraint(model.t, rule=_x2dot)
def obj(model):
return sum((model.x1[i]-model.x1_meas[i])**2 for i in model.MEAS_t)
model.obj = Objective(rule=obj)
运行脚本:
rom pyomo.environ import *
from pyomo.dae import *
from Parameter_Estimation2 import model
import copy
#model copy
model_sim_window = copy.deepcopy(model)
model_sim_loop = copy.deepcopy(model)
#(1) Parameter Estimation
discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(model,nfe=8,ncp=5)
solver=SolverFactory('ipopt')
results = solver.solve(model,tee= True)
p_1 = value(model.p1)
p_2 = value(model.p2)
print('p_1',p_1)
print('p_2',p_2)
#(2) Simulation-window
model_sim_window.obj.deactivate()
model_sim_window.t.value = (0,20)
model_sim_window.p1.value = p_1
model_sim_window.p2.value = p_2
sim = Simulator(model_sim_window, package='casadi')
tsim, profiles = sim.simulate(numpoints=100, integrator='cvodes')
#(3)Simulation-loop
model_sim_loop.obj.deactivate()
model_sim_loop.p1.value = p_1
model_sim_loop.p2.value = p_2
sim = Simulator(model_sim_loop, package='casadi')
x0=[0,0]
result =[x0]
t_vec =[0]
for t in range(0,20):
model_sim_loop.t.value = (t,t+1)
tsim, profiles = sim.simulate(numpoints=10, integrator='cvodes',initcon=x0)
result.append(profiles[-1])
t_vec.append(tsim[-1])
x0= profiles[-1]
print('result',result)
print('time',t_vec)
现在,问题:
有没有办法重用模型实例进行参数估计
(评论 1)和模拟(评论 2)?我用
“丑陋”的深拷贝解决了这个问题。pyomo.dae 模拟器有一个 step 方法,可用于
在循环中逐步集成 dae 系统。我想在不重新初始化模型的情况下更改步骤之间的输入(测量值、控制信号)。我
知道,cvodes 有这样的方法。pyomo如何用于模型预测控制。有没有
例子?什么是好的起点?
谢谢再见
亨德里克森