有人会尝试向我解释为什么当我尝试 fit_transform 任何短词时 CountVectorizer 会引发此错误吗?即使我使用 stopwords=None 我仍然会得到同样的错误。这是代码
from sklearn.feature_extraction.text import CountVectorizer
text = ['don\'t know when I shall return to the continuation of my scientific work. At the moment I can do absolutely nothing with it, and limit myself to the most necessary duty of my lectures; how much happier I would be to be scientifically active, if only I had the necessary mental freshness.']
cv = CountVectorizer(stop_words=None).fit(text)
并按预期工作。然后,如果我尝试使用另一个文本进行 fit_transform
cv.fit_transform(['q'])
并且引发的错误是
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-acbd560df1a2> in <module>()
----> 1 cv.fit_transform(['q'])
~/.local/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in fit_transform(self, raw_documents, y)
867
868 vocabulary, X = self._count_vocab(raw_documents,
--> 869 self.fixed_vocabulary_)
870
871 if self.binary:
~/.local/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in _count_vocab(self, raw_documents, fixed_vocab)
809 vocabulary = dict(vocabulary)
810 if not vocabulary:
--> 811 raise ValueError("empty vocabulary; perhaps the documents only"
812 " contain stop words")
813
ValueError: empty vocabulary; perhaps the documents only contain stop words
我读了一些关于这个错误的主题,因为它似乎真的经常出现错误 CV 引发,但我发现的只是涵盖文本真正只包含停用词的情况。我真的无法弄清楚我的问题是什么,所以如果我得到任何帮助,我将不胜感激!