您可以使用一个以 1 作为其中心值且宽度小于数据点间距的内核的卷积来执行此操作。
一维示例:
import numpy as np
import scipy.signal
data = np.array([0,0,0,0,0,5,0,0,0,0,0])
kernel = np.array([0.5,1,0.5])
scipy.signal.convolve(data, kernel, mode="same")
给
array([ 0. , 0. , 0. , 0. , 2.5, 5. , 2.5, 0. , 0. , 0. , 0. ])
请注意,对于大型阵列, fftconvolve可能要快得多。您还必须指定在数组边界处应该发生什么。
更新: 3-d 示例
import numpy as np
from scipy import signal
# first build the smoothing kernel
sigma = 1.0 # width of kernel
x = np.arange(-3,4,1) # coordinate arrays -- make sure they contain 0!
y = np.arange(-3,4,1)
z = np.arange(-3,4,1)
xx, yy, zz = np.meshgrid(x,y,z)
kernel = np.exp(-(xx**2 + yy**2 + zz**2)/(2*sigma**2))
# apply to sample data
data = np.zeros((11,11,11))
data[5,5,5] = 5.
filtered = signal.convolve(data, kernel, mode="same")
# check output
print filtered[:,5,5]
给
[ 0. 0. 0.05554498 0.67667642 3.0326533 5. 3.0326533
0.67667642 0.05554498 0. 0. ]