我正在尝试将 sklearn 的 CountVectorizer 与给定的词汇表一起使用。我的词汇是:
['humanitarian crisis', 'vacations for the anti-cruise crowd', 'school textbook', "b'cruise vacations for the anti-cruise", 'budget deal', "b'public school", 'u.n. announces', 'wrong petrol', 'vacations for the anti-cruise', "b'cruise vacations for the anti-cruise crowd"]
向量化的输入取自 pandas 数据帧。我从带有pd.read_csv
and的 csv 中读到了这个encoding='utf8'
:
29371 b'9 quirky and brilliant paris boutiques'
20525 b'public school textbook filled with muslim bi...
2871 b'congress focuses on averting shutdown, but t...
29902 b'yarmouk siege: u.n. announces trip to syria ...
45596 b'fracking protesters arrested for gluing them...
6266 b'cruise vacations for the anti-cruise crowd'
调用 后CountVectorizer(vocabulary=vocabulary).fit_transform()
,我得到一个全为零的矩阵:
(<6x10 sparse matrix of type '<type 'numpy.int64'>'
with 0 stored elements in Compressed Sparse Row format>, <class 'scipy.sparse.csr.csr_matrix'>)
这是因为字符串类型的问题,还是我如何调用 CountVectorizer 的问题?我不确定如何转换字符串类型;我在 python2.7 和 pandas 中尝试了多种不同的encode
调用decode
。任何建议,将不胜感激。