我使用 Theano 后端实现了一个带有 Keras 的卷积自动编码器。我正在改变我的方法来尝试处理不同尺寸的图像。只要我使用 numpy 的stack
函数来构建数据集(相同大小的图像),我就很成功。但是,对于不同大小的图像,我们不能使用stack
,并且fit
需要一个 numpy 数组。所以我改为fit_generator
避免尺寸检查。问题是最后一层期望 16 作为输入中的最后一个维度,我不明白为什么它会获取原始图像的维度。
看看下面的代码和错误输出。
import numpy as np
import keras
from keras.models import Sequential, Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
AE_EPOCHS = 10
VERB = 1
batchsz = 16
outfun = 'sigmoid'
data = []
dimensions = [(10, 15), (12, 15), (7,15), (20,15), (25,15)]
for d in dimensions:
dd = np.random.rand(*d)
dd = dd.reshape((1,)+dd.shape)
data.append(dd)
input_img = Input(shape=(1, None, 15))
filtersz = 3
pad_it = 'same'
size1 = 16
size2 = 8
x = Conv2D(size1, (filtersz, filtersz), activation='relu', padding=pad_it)(input_img)
x = MaxPooling2D((2, 2), padding=pad_it)(x)
x = Conv2D(size2, (filtersz, filtersz), activation='relu', padding=pad_it)(x)
x = MaxPooling2D((2, 2), padding=pad_it)(x)
x = Conv2D(size2, (filtersz, filtersz), activation='relu', padding=pad_it)(x)
encoded = MaxPooling2D((2, 2), padding=pad_it)(x)
x = Conv2D(size2, (filtersz, filtersz), activation='relu', padding=pad_it)(encoded)
x = UpSampling2D((2, 2), data_format="channels_first")(x)
x = Conv2D(size2, (filtersz, filtersz), activation='relu', padding=pad_it)(x)
x = UpSampling2D((2, 2), data_format="channels_first")(x)
x = Conv2D(size1, (filtersz, filtersz), activation='relu', padding=pad_it)(x)
x = UpSampling2D((2, 2), data_format="channels_first")(x)
decoded = Conv2D(1, (filtersz, filtersz), activation=outfun, padding=pad_it)(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss= 'binary_crossentropy')
x_train = data[1:]
x_test= data[0].reshape((1,)+ data[0].shape)
def mygen(xx, *args, **kwargs):
for i in xx:
yield (i,i)
thegen = mygen(x_train)
#If I use this generator somehow None is returned so it is not used
thegenval = mygen(np.array([x_test]))
hist = autoencoder.fit_generator(thegen,
epochs=AE_EPOCHS,
steps_per_epoch=4,
verbose=VERB,
validation_data=(x_test, x_test),
validation_steps=1
)
回溯(最近一次通话最后):
文件“stacko.py”,第 107 行,validation_steps=1
包装器中的文件“/usr/local/lib/python3.5/dist-packages/keras/legacy/interfaces.py”,第 88 行,返回 func(*args, **kwargs)
文件“/usr/local/lib/python3.5/dist-packages/keras/engine/training.py”,第 1847 行,在 fit_generator val_x、val_y、val_sample_weight 中)
文件“/usr/local/lib/python3.5/dist-packages/keras/engine/training.py”,第 1315 行,在 _standardize_user_data exception_prefix='target')
文件“/usr/local/lib/python3.5/dist-packages/keras/engine/training.py”,第 139 行,在 _standardize_input_data str(array.shape))
ValueError:检查目标时出错:预期 conv2d_7 的形状为 (None, 1, None, 16) 但数组的形状为 (1, 1, 10, 15)