我按照 Keras 猫/狗图像分类教程 Keras 图像分类教程 ,发现与报告值相似的结果。然后,我从该教程教程示例 1 代码中的第一个示例中获取代码,稍微修改了几行,并为灰度图像数据集(约 15 万张图像,跨越 7 个类)训练了模型。
这给了我很好的初步结果(准确率约为 84%),对此我很满意。
接下来我尝试自己实现图像批处理生成器,这就是我遇到问题的地方。简而言之,代码似乎运行良好,除了模型报告的准确率在两个时期内迅速达到 >= 99%。由于数据集中的噪声,这种准确度是不可信的。在使用经过训练的模型预测一批新数据(训练或验证数据集之外的图像)后,我发现模型总是预测第一类(即 [1.,0.,0.,0.,0., 0.,0.].损失函数迫使模型 100% 地预测单个类,即使我传入的标签分布在所有类中。
经过 28 个 epoch 的训练,我看到以下输出:
320/320 [==============================] - 1114s - loss: 1.5820e-07 - categorical_accuracy: 1.0000 - sparse_categorical_accuracy: 0.0000e+00 - val_loss: 16.1181 - val_categorical_accuracy: 0.0000e+00 - val_sparse_categorical_accuracy: 0.0000e+00
当我检查教程代码中的批处理生成器输出并比较我的批处理生成器输出时,两个生成器之间的形状、数据类型和值范围是相同的。我想强调一下,生成器传递来自每个类别的 y 标签,而不仅仅是 array([ 1.., 0., 0., 0., 0., 0., 0.], dtype=float32)。因此,我对自己做错了什么感到迷茫。
自从我几天前发布这段代码以来,我使用了默认的 Keras 图像生成器,并成功地在相同的数据集和相同的网络架构上训练了网络。因此,关于我如何在生成器中加载和传递数据的某些内容一定是不正确的。
这是我实现的代码:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
import numpy.random as nprand
import imageio
import os, re, random, sys, csv
import scipy
img_width, img_height = 112, 112
input_shape = (img_width,img_height,1)
batch_size = 200
epochs = 2
train_image_directory = '/PATH/To/Directory/train/'
valid_image_directory = '/PATH/To/Directory/validate/'
video_info_file = '/PATH/To/Directory/train_labels.csv'
train_image_paths = [train_image_directory + m.group(1) for m in [re.match(r"(\d+_\d+\.png)", fname) for fname in os.listdir(train_image_directory)] if m is not None]
valid_image_paths = [valid_image_directory + m.group(1) for m in [re.match(r"(\d+_\d+\.png)", fname) for fname in os.listdir(valid_image_directory)] if m is not None]
num_train_images = len(train_image_paths)
num_val_images = len(valid_image_paths)
label_map = {}
label_decode = {
'0': [1.,0.,0.,0.,0.,0.,0.],
'1': [0.,1.,0.,0.,0.,0.,0.],
'2': [0.,0.,1.,0.,0.,0.,0.],
'3': [0.,0.,0.,1.,0.,0.,0.],
'4': [0.,0.,0.,0.,1.,0.,0.],
'5': [0.,0.,0.,0.,0.,1.,0.],
'6': [0.,0.,0.,0.,0.,0.,1.]
}
with open(video_info_file) as f:
reader = csv.reader(f)
for row in reader:
key = row[0]
if key in label_map:
pass
label_map[key] = label_decode[row[1]]
sometimes = lambda aug: iaa.Sometimes(0.5,aug)
seq = iaa.Sequential(
[
iaa.Fliplr(0.5),
iaa.Flipud(0.2),
sometimes(iaa.Crop(percent=(0, 0.1))),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-5, 5),
shear=(-16, 16),
order=[0, 1],
cval=(0, 1),
mode=ia.ALL
)),
iaa.SomeOf((0, 3),
[
sometimes(iaa.Superpixels(p_replace=(0, 0.40), n_segments=(20, 100))),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 1.0)),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255)),
iaa.OneOf([
iaa.Dropout((0.01, 0.1)),
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05)),
]),
iaa.Invert(0.05),
iaa.Add((-10, 10)),
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.ContrastNormalization((0.5, 2.0)),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 1.5), sigma=0.2)),
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.03))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True)
def image_data_generator(image_paths, labels, batch_size, training):
while(1):
image_paths = nprand.choice(image_paths, batch_size)
X0 = np.asarray([imageio.imread(x) for x in image_paths])
Y = np.asarray([labels[x] for x in image_paths],dtype=np.float32)
if(training):
X = np.divide(np.expand_dims(seq.augment_images(X0)[:,:,:,0],axis=3),255.)
else:
X = np.expand_dims(np.divide(X0[:,:,:,0],255.),axis=3)
X = np.asarray(X,dtype=np.float32)
yield X,Y
def predict_videos(model,video_paths):
i=0
predictions=[]
while(i < len(video_paths)):
video_reader = imageio.get_reader(video_paths[i])
X0 = np.expand_dims([ im[:,:,0] for x,im in enumerate(video_reader) ],axis=3)
prediction = model.predict(X0)
i=i+1
predictions.append(prediction)
return predictions
train_gen = image_data_generator(train_image_paths,label_map,batch_size,True)
val_gen = image_data_generator(valid_image_paths,label_map,batch_size,False)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(7))
model.add(Activation('softmax'))
model.load_weights('/PATH/To_pretrained_weights/pretrained_model.h5')
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['categorical_accuracy','sparse_categorical_accuracy'])
checkpointer = ModelCheckpoint('/PATH/To_pretrained_weights/pretrained_model.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1)
reduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=20, verbose=0, mode='auto', cooldown=0, min_lr=0)
early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1)
callbacks_list = [checkpointer, early_stop, reduceLR]
model.fit_generator(
train_gen,
steps_per_epoch = -(-num_train_images // batch_size),
epochs=epochs,
validation_data=val_gen,
validation_steps = -(-num_val_images // batch_size),
callbacks=callbacks_list)