1

以下代码,主要是从

http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_SequentialMinimalOptimization.htm

工作正常。

module SVMModule

open Accord.MachineLearning
open Accord.MachineLearning.VectorMachines
open Accord.MachineLearning.VectorMachines.Learning
open Accord.Statistics.Kernels
open Accord.Math.Optimization.Losses

// open MathNet.Numerics.LinearAlgebra.Matrix

let inputs = [| [| 0.; 0. |]; [| 0.; 1. |]; [| 1.; 0. |]; [| 1.; 1. |] |]
let xor = [| 0; 1; 1; 0 |]
/// Creates and trains a Support Vector Machine given inputs and outputs.
/// The kernel can be Linear, Gaussian, or Polynomial.
/// The default tolerance is 1e-2.
let train (C: float) (tol: float) (inputs: float [] []) =
    let learn = SequentialMinimalOptimization<Gaussian>()

    learn.UseComplexityHeuristic <- true
    learn.UseKernelEstimation <- true
    if C >= 0. then learn.Complexity <- C
    if tol > 0. then learn.Tolerance <- tol

    let svm = learn.Learn(inputs, xor)
    svm

let svm = train 0.5 1e-2 inputs
let prediction = svm.Decide inputs

printfn "SVM_0 Prediction: %A" prediction

我想实现一个多态版本train,比如

let train (kernel: string) (C: float) (tol: float) (inputs: float [] []) =
    let learn =
        if kernel = "Gaussian" then 
           SequentialMinimalOptimization<Gaussian>()
        else
           SequentialMinimalOptimization<Linear>()
    // More code

这不起作用,因为if表达式必须在其所有分支中返回相同类型的对象。

我想知道是否有一种方法可以传递LinearGaussian作为类型train(这些确实是类型),这样我就不必为每种类型(trainGaussiantrainLinear)编写一个火车函数。Akso,即使我不厌其烦地编写这些单独的函数,我想根据用户的选择在运行时调用它们也很困难,因为if语句的相同问题会引起丑陋的头脑。

我在F#使用接口时实现了多态性,但使用的是我自己构建的类。这些类在Accord.NET其中,即使它们从基类继承,我也无法处理类型问题并实现多态性。

感谢您的任何建议。

4

1 回答 1

4

Gaussian用类似的类型参数简单地替换具体类型应该很简单't(并且可以选择将其作为显式类型参数添加到train)。这样做时,我已经稍微清理了您现有的代码:

let train<'t> (C: float) (tol: float) (inputs: float [] []) =
    let learn = SequentialMinimalOptimization<'t>(UseComplexityHeuristic = true, UseKernelEstimation = true)
    if C >= 0. then learn.Complexity <- C
    if tol > 0. then learn.Tolerance <- tol

    learn.Learn(inputs, xor)

然后在调用站点,编译器需要通过某种方式知道要使用什么类型,或者通过显式传递它:

let svm = train<Gaussian> 0.5 1e-2 inputs

或者依靠类型推断来从程序的另一部分流动类型:

let svm:Gaussian = train 0.5 1e-2 inputs
于 2017-05-26T19:50:00.770 回答