有一种替代方法使用data.table
,它的速度大约是 OP 的合并方法dcast()
的两倍
完成从宽到长的重塑
molten <- melt(dt, measure.vars = patterns("^DI"))
molten
# Global.Company.Key Calendar.Data.Year.and.Quarter Current.Assets.Total DRILL_TYPE variable value
# 1: 1380 2000 2218 U DI.Oil.Prod.Quarter 18395.6792
# 2: 1380 2000 2218 D DI.Oil.Prod.Quarter 1301949.2404
# 3: 1380 2000 2218 V DI.Oil.Prod.Quarter 235.3111
# 4: 1380 2000 2218 H DI.Oil.Prod.Quarter 27261.8050
# 5: 1380 2000 2218 U DI.Oil.Prod.Quarter 4719.2796
# 6: 1380 2000 2218 U DI.Gas.Prod.Quarter 1600471.2711
# 7: 1380 2000 2218 D DI.Gas.Prod.Quarter 4882347.2293
# 8: 1380 2000 2218 V DI.Gas.Prod.Quarter 2611.6022
# 9: 1380 2000 2218 H DI.Gas.Prod.Quarter 9634.7642
#10: 1380 2000 2218 U DI.Gas.Prod.Quarter 27648.2766
计算总计
totals <- molten[, .(DRILL_TYPE = "Total.Sum", value = sum(value)),
by = .(Global.Company.Key, Calendar.Data.Year.and.Quarter,
Current.Assets.Total, variable)]
totals
# Global.Company.Key Calendar.Data.Year.and.Quarter Current.Assets.Total variable DRILL_TYPE value
#1: 1380 2000 2218 DI.Oil.Prod.Quarter Total.Sum 1352561
#2: 1380 2000 2218 DI.Gas.Prod.Quarter Total.Sum 6522713
将总计附加到详细信息
molten <- rbind(molten, totals)
molten
# Global.Company.Key Calendar.Data.Year.and.Quarter Current.Assets.Total DRILL_TYPE variable value
# 1: 1380 2000 2218 U DI.Oil.Prod.Quarter 18395.6792
# 2: 1380 2000 2218 D DI.Oil.Prod.Quarter 1301949.2404
# 3: 1380 2000 2218 V DI.Oil.Prod.Quarter 235.3111
# 4: 1380 2000 2218 H DI.Oil.Prod.Quarter 27261.8050
# 5: 1380 2000 2218 U DI.Oil.Prod.Quarter 4719.2796
# 6: 1380 2000 2218 U DI.Gas.Prod.Quarter 1600471.2711
# 7: 1380 2000 2218 D DI.Gas.Prod.Quarter 4882347.2293
# 8: 1380 2000 2218 V DI.Gas.Prod.Quarter 2611.6022
# 9: 1380 2000 2218 H DI.Gas.Prod.Quarter 9634.7642
#10: 1380 2000 2218 U DI.Gas.Prod.Quarter 27648.2766
#11: 1380 2000 2218 Total.Sum DI.Oil.Prod.Quarter 1352561.3153
#12: 1380 2000 2218 Total.Sum DI.Gas.Prod.Quarter 6522713.1433
由长变宽
# reorder factor levels of DRILL_TYPE to ensure
# that columns are in the same order as rows (with totals last)
molten[, DRILL_TYPE := forcats::fct_inorder(DRILL_TYPE)]
# reshape
dcast(molten, ... ~ variable + DRILL_TYPE, sum, value.var = "value")
# Global.Company.Key Calendar.Data.Year.and.Quarter Current.Assets.Total DI.Oil.Prod.Quarter_U DI.Oil.Prod.Quarter_D
#1: 1380 2000 2218 23114.96 1301949
# DI.Oil.Prod.Quarter_V DI.Oil.Prod.Quarter_H DI.Oil.Prod.Quarter_Total.Sum DI.Gas.Prod.Quarter_U DI.Gas.Prod.Quarter_D
#1: 235.3111 27261.8 1352561 1628120 4882347
# DI.Gas.Prod.Quarter_V DI.Gas.Prod.Quarter_H DI.Gas.Prod.Quarter_Total.Sum
#1: 2611.602 9634.764 6522713
结果类似于使用 OPmerge()
方法创建的结果(列顺序除外)。
基准测试
mb <- microbenchmark::microbenchmark(
merge = merge(
x = dcast(
dt,
Global.Company.Key + Calendar.Data.Year.and.Quarter + Current.Assets.Total ~ DRILL_TYPE ,
value.var = c("DI.Oil.Prod.Quarter", "DI.Gas.Prod.Quarter"),
fun = list(sum)
)[, -grepl(glob2rx("DI.Gas.Prod.Quarter_*"), colnames(
dcast(
dt,
Global.Company.Key + Calendar.Data.Year.and.Quarter + Current.Assets.Total ~ DRILL_TYPE ,
value.var = c("DI.Oil.Prod.Quarter", "DI.Gas.Prod.Quarter"),
fun = list(sum)
)
)), with = FALSE][, DI.Oil.Prod.Total.Sum := rowSums(.SD, na.rm = TRUE), by =
.(Global.Company.Key, Calendar.Data.Year.and.Quarter)][]
,
y = dcast(
dt,
Global.Company.Key + Calendar.Data.Year.and.Quarter + Current.Assets.Total ~ DRILL_TYPE ,
value.var = c("DI.Oil.Prod.Quarter", "DI.Gas.Prod.Quarter"),
fun = list(sum)
)[, -grepl(glob2rx("DI.Oil.Prod.Quarter_*"), colnames(
dcast(
dt,
Global.Company.Key + Calendar.Data.Year.and.Quarter + Current.Assets.Total ~ DRILL_TYPE ,
value.var = c("DI.Oil.Prod.Quarter", "DI.Gas.Prod.Quarter"),
fun = list(sum)
)
)), with = FALSE][, DI.Gas.Prod.Total.Sum := rowSums(.SD, na.rm = TRUE), by =
.(Global.Company.Key, Calendar.Data.Year.and.Quarter)][]
,
all.x = TRUE
,
by = c(
"Global.Company.Key",
"Calendar.Data.Year.and.Quarter",
"Current.Assets.Total"
)
),
aggr = {
molten <- melt(dt, measure.vars = patterns("^DI"))
molten[, Total.Sum := sum(value), by = .(Global.Company.Key, Calendar.Data.Year.and.Quarter, Current.Assets.Total, variable)]
dcast(molten, ... ~ variable + DRILL_TYPE, sum, value.var = "value")
molten <- melt(dt, measure.vars = patterns("^DI"))
molten <- rbind(molten, molten[, .(DRILL_TYPE = "Total.Sum", value = sum(value)),
by = .(Global.Company.Key, Calendar.Data.Year.and.Quarter,
Current.Assets.Total, variable)])
molten[, DRILL_TYPE := forcats::fct_inorder(DRILL_TYPE)]
dcast(molten, ... ~ variable + DRILL_TYPE, sum, value.var = "value")
},
times = 100L
)
请注意,合并方法需要大约三倍的代码行数。性能也比聚合和 rbind方法慢两倍。
Unit: milliseconds
expr min lq mean median uq max neval
merge 20.298773 21.181559 22.13640 21.77682 22.59126 26.22265 100
aggr 9.393847 9.806165 10.33053 10.07595 10.35460 20.11112 100