我们需要在 Apache Spark Dataset中跨字符串实现 Jaro-Winkler 距离计算。我们是新来的火花,在网上搜索后,我们找不到太多东西。如果您能指导我们,那就太好了。我们考虑过使用flatMap然后意识到它没有帮助,然后我们尝试使用几个 foreach 循环但无法弄清楚如何前进。因为每个字符串都必须与所有字符串进行比较。就像在下面的数据集中一样。
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1,"I wish Java could use case classes"),
RowFactory.create(2,"Logistic,regression,models,are,neat"));
在上述数据框中找到的所有字符串的示例 jaro winkler 得分。
标签之间的距离得分,0,1 -> 0.56
标签之间的距离得分,0,2 -> 0.77
标签之间的距离得分,0,3 -> 0.45
标签之间的距离得分,1,2 -> 0.77
标签之间的距离得分,2 ,3 -> 0.79
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import info.debatty.java.stringsimilarity.JaroWinkler;
public class JaroTestExample {
public static void main( String[] args )
{
System.setProperty("hadoop.home.dir", "C:\\winutil");
JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("SparkJdbcDs").setMaster("local[*]"));
SQLContext sqlContext = new SQLContext(sc);
SparkSession spark = SparkSession.builder()
.appName("JavaTokenizerExample").getOrCreate();
JaroWinkler jw = new JaroWinkler();
// substitution of s and t
System.out.println(jw.similarity("My string", "My tsring"));
// substitution of s and n
System.out.println(jw.similarity("My string", "My ntrisg"));
List<Row> data = Arrays.asList(
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1,"I wish Java could use case classes"),
RowFactory.create(2,"Logistic,regression,models,are,neat"));
StructType schema = new StructType(new StructField[] {
new StructField("label", DataTypes.IntegerType, false,
Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false,
Metadata.empty()) });
Dataset<Row> sentenceDataFrame = spark.createDataFrame(data, schema);
sentenceDataFrame.foreach();
}
}