1

所以,我有一个如下所示的模式。

def someFunction(...) : ... = 
{
  // Somewhere here some large string (still < 1 GB) is made ...
  //  ... and sometimes I get Java.lang.OutOfMemoryError while building that string
}

....
val RDDb = RDDa.map(x => someFunction(...))

因此,在内部someFunction,在一个地方制作了一个大字符串,它仍然不是那么大(< 1 GB),但是java.lang.OutOfMemoryError: Java heap space在构建该字符串时有时会出错。即使我的执行程序内存非常大(8 GB),也会发生这种情况。

根据这篇文章,有用户内存和 Spark 内存。现在在我的情况下,我应该增加哪个分数,用户内存还是 Spark 内存?

PS:我使用的是 Spark 2.0 版

4

1 回答 1

2

1G的原始字符串可以轻松使用超过8G的内存。最好使用流处理,例如 XMLEventReader for XML。

参考 Rober Sedgewick 和 Kevin Wayne 所著的 Algorithm 一书中的估计。每个字符串有 56 个字节的开销。 内存估计

我写了一个简单的测试程序并运行-Xmx8G

object TestStringBuilder {
  val m = 1024 * 1024
  def memUsage(): Unit = {
    val runtime = Runtime.getRuntime

    println(
      s"""max: ${runtime.maxMemory() / m} M 
         |allocated: ${runtime.totalMemory() / m} M 
         |free: ${runtime.freeMemory() / m} M""".stripMargin)
  }

  def main(args: Array[String]): Unit = {
    val builder = new StringBuilder()
    val size = 10 * m
    try {
      while (true) {
        builder.append(Math.random())
        if (builder.length % size == 0) {
          println(s"len is ${builder.length / m} M")
          memUsage()
        }
      }
    }
    catch {
      case ex: OutOfMemoryError =>
        println(s"OutOfMemoryError len is ${builder.length/m} M")
        memUsage()
      case ex =>
        println(ex)
    }
  }
}

输出可能是这样的。

len is 140 M
max: 7282 M allocated: 673 M free: 77 M
len is 370 M
max: 7282 M allocated: 2402 M free: 72 M
len is 470 M
max: 7282 M allocated: 1479 M free: 321 M
len is 720 M
max: 7282 M allocated: 3784 M free: 314 M
len is 750 M
max: 7282 M allocated: 3784 M free: 314 M
len is 1020 M
max: 7282 M allocated: 3784 M free: 307 M
OutOfMemoryError len is 1151 M
max: 7282 M allocated: 3784 M free: 303 M
于 2016-11-07T13:46:38.030 回答