I restore a saved parameters of a model in tensorflow. I want test difference configure for my model with different layer and different parameters size.
for example if one of my parameters that I saved be like this:
W_conv1 = weight_variable([7 , 7, 1, 64])
if I restore this, it works; but I want change my parameter like this :
W_conv1 = weight_variable([5 , 5, 1, 64])
or
W_conv1 = weight_variable([5 , 5, 1, 50])
or
W_conv1 = weight_variable([9 , 9, 1, 80])
or ... .
Now I want used my saved checkpoint for restore in new config. If the size of each dimension of parameters changed it randomly initialized from my saved parameter and remind places initialize randomly.
Is it possible in tensorflow for doing this?