1

我们可以说一个 NP 完全问题是一个既属于 NP 又属于 NP-hard 的问题,但是我们是否可以仅仅因为一个问题是 NP-complete 的事实而完全认为一个问题是 NP-hard 的。

示例:我将一个 NP 完全问题简化a为一个问题b。因此,b现在证明问题是NP完全的。我真的可以说它也是 NP-hard 吗?

4

1 回答 1

1

NP完整性的定义是:

问题 Q 是 NP 完全的当且仅当 Q 在 NP 中并且 Q 是 NP 难的。

因此,是的,根据定义,我们可以肯定地说任何 NP 完全问题都是 NP 难的。

请注意,您的问题有一个轻微的错误陈述:

示例:我将一个 NP 完全问题简化a为一个问题b。因此,b现在证明问题是NP完全的。

上述结论只有在你已经证明b是 NP 时才成立。如果b它比 NP“更难”,那么它不是NP 完全的。但是请注意,减少足以证明这b是 NP 难的。

于 2016-04-28T12:45:50.850 回答