2

我编写了一个函数,它使用 CFFI 将 numpy 数组传递到 C 代码中。它利用缓冲区协议和 memoryview 有效地传递数据而不复制它。但是,这意味着您需要传递 C 连续数组并确保您使用正确的类型。Numpy 提供了一个numpy.ascontiguous,执行此操作的函数。所以我遍历参数,并应用这个函数。下面的实现是有效的,并且可能是普遍感兴趣的。但是,考虑到它被调用的次数,它很慢。(任何关于如何加快速度的一般性评论都会有所帮助。)

但是,实际的问题是,当您将第一个列表推导替换为生成器推导时,或者如果您重构代码以便np.ascontigous在第二个推导中调用,则传递给 C 代码的指针不再指向 numpy 数组的开头. 我认为它没有被调用。我正在迭代理解并且只使用返回值,为什么使用列表理解或生成器理解会改变任何东西?

def cffi_wrap(cffi_func, ndarray_params, pod_params, return_shapes=None):
    """
    Wraps a cffi function to allow it to be called on numpy arrays.

    It uss the numpy buffer protocol and and the cffi buffer protocol to pass the 
    numpy array into the c function without copying any of the parameters. 
    You will need to pass dimensions into the C function, which you can do using 
    the pod_params.

    Parameters
    ----------
    cffi_func : c function
        This is a c function declared using cffi. It must take double pointers and 
        plain old data types. The arguments must be in the form of numpy arrays, 
        plain old data types, and then the returned numpy arrays.
    ndarray_params : iterable of ndarrays
         The numpy arrays to pass into the function.
    pod_params : tuple of plain old data
        This plain old data objects to pass in.  This may include for example 
        dimensions.
    return_shapes : iterable of tuples of positive ints
          The shapes of the returned objects.

    Returns
    -------
    return_vals : ndarrays of doubles.
        The objects to be calculated by the cffi_func.

    """

    arr_param_buffers = [np.ascontiguousarray(param, np.float64) 
         if np.issubdtype(param.dtype, np.float)
         else np.ascontiguousarray(param, np.intc) for param in ndarray_params]
    arr_param_ptrs = [ffi.cast("double *", ffi.from_buffer(memoryview(param))) 
        if np.issubdtype(param.dtype, np.float)
        else ffi.cast("int *", ffi.from_buffer(memoryview(param))) 
        for param in arr_param_buffers]

    if return_shapes is not None:

        return_vals_ptrs = tuple(ffi.new("double[" + str(np.prod(shape)) + "]") 
            for shape in return_shapes)
        returned_val = cffi_func(*arr_param_ptrs, *pod_params, *return_vals_ptrs)
        return_vals = tuple(np.frombuffer(ffi.buffer(
              return_val))[:np.prod(shape)].reshape(shape)
              for shape, return_val in zip(return_shapes, return_vals_ptrs))
    else:
        returned_val = cffi_func(*arr_param_ptrs, *pod_params)
        return_vals = None

    if returned_val is not None and return_vals is not None:
        return_vals = return_vals + (returned_val,)
    elif return_vals is None:
       return_vals = (returned_val,)

    if len(return_vals) == 1:
        return return_vals[0]
    else:
       return return_vals
4

1 回答 1

1

我只是在猜测,但错误可能来自keepalives:使用arr_param_buffers列表理解,就像在您发布的代码中一样,只要这个局部变量存在(即在cffi_wrap()的整个持续时间内),所有创建的numpy数组还活着。这使您可以ffi.from_buffer(memoryview(...))在下一行进行操作,并确保它们都是指向有效数据的指针。

如果arr_param_buffers用生成器表达式替换,它会一个一个地生成新的numpy数组,调用ffi.from_buffer(memoryview(param))它们,然后将它们扔掉。据我所知,ffi.from_buffer(x)返回一个应该保持x活动状态的对象,但它本身可能x == memoryview(nd)不会保持 numpy 数组活动。nd

于 2016-03-22T16:30:56.950 回答