0

我正在尝试读取 100 个训练文件并使用 sklean 对它们进行矢量化。这些文件的内容是代表系统调用的单词。一旦矢量化,我想将矢量打印出来。我的第一次尝试如下:

import re
import os
import sys
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
import numpy as np
import numpy.linalg as LA

trainingdataDir = 'C:\data\Training data'

def readfile():
    for file in os.listdir(trainingdataDir):
        trainingfiles = os.path.join(trainingdataDir, file)
        if os.path.isfile(trainingfiles):
         data = open(trainingfiles, "rb").read()

    return data 

train_set = [readfile()]

vectorizer = CountVectorizer()
transformer = TfidfTransformer()

trainVectorizerArray = vectorizer.fit_transform(train_set).toarray()
print 'Fit Vectorizer to train set', trainVectorizerArray

但是,这只返回最后一个文件的向量。我的结论是打印函数应该放在for循环中。所以第二次尝试:

def readfile():
    for file in os.listdir(trainingdataDir):
        trainingfiles = os.path.join(trainingdataDir, file)
        if os.path.isfile(trainingfiles):
         data = open(trainingfiles, "rb").read()
    trainVectorizerArray = vectorizer.fit_transform(data).toarray()
    print 'Fit Vectorizer to train set', trainVectorizerArray          

但是,这不会返回任何内容。你能帮我解决这个问题吗?为什么我看不到打印出来的向量?

4

1 回答 1

0

问题是因为用于矢量化的数据集列表是空的。我设法矢量化了一组 100 个文件。我首先打开文件,然后读取每个文件,最后将它们添加到列表中。'tfidf_vectorizer' 然后使用数据集列表

import re
import os
import sys
import numpy as np
import numpy.linalg as LA
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

trainingdataDir = 'C:\\data\\Training data'

tfidf_vectorizer = TfidfVectorizer()

transformer = TfidfTransformer()
def readfile(trainingdataDir):
    train_set = []
    for file in os.listdir(trainingdataDir):
        trainingfiles = os.path.join(trainingdataDir, file)
        if os.path.isfile(trainingfiles): 
            data = open(trainingfiles, 'r')
            data_set=str.decode(data.read())
            train_set.append(data_set)
    return train_set 


tfidf_matrix_train = tfidf_vectorizer.fit_transform(readfile(trainingdataDir))
print 'Fit Vectorizer to train set',tfidf_matrix_train
print "cosine scores ==> ",cosine_similarity(tfidf_matrix_train[0:1], tfidf_matrix_train)
于 2015-10-22T09:02:54.723 回答