我有一个以时间为索引(1 分钟频率)和几列数据的 pandas DataFrame。有时数据包含 NaN。如果是这样,我只想在间隙不超过 5 分钟时进行插值。在这种情况下,这将是最多 5 个连续的 NaN。数据可能看起来像这样(几个测试用例,显示了问题):
import numpy as np
import pandas as pd
from datetime import datetime
start = datetime(2014,2,21,14,50)
data = pd.DataFrame(index=[start + timedelta(minutes=1*x) for x in range(0, 8)],
data={'a': [123.5, np.NaN, 136.3, 164.3, 213.0, 164.3, 213.0, 221.1],
'b': [433.5, 523.2, 536.3, 464.3, 413.0, 164.3, 213.0, 221.1],
'c': [123.5, 132.3, 136.3, 164.3] + [np.NaN]*4,
'd': [np.NaN]*8,
'e': [np.NaN]*7 + [2330.3],
'f': [np.NaN]*4 + [2763.0, 2142.3, 2127.3, 2330.3],
'g': [2330.3] + [np.NaN]*7,
'h': [2330.3] + [np.NaN]*6 + [2777.7]})
它的内容如下:
In [147]: data
Out[147]:
a b c d e f g h
2014-02-21 14:50:00 123.5 433.5 123.5 NaN NaN NaN 2330.3 2330.3
2014-02-21 14:51:00 NaN 523.2 132.3 NaN NaN NaN NaN NaN
2014-02-21 14:52:00 136.3 536.3 136.3 NaN NaN NaN NaN NaN
2014-02-21 14:53:00 164.3 464.3 164.3 NaN NaN NaN NaN NaN
2014-02-21 14:54:00 213.0 413.0 NaN NaN NaN 2763.0 NaN NaN
2014-02-21 14:55:00 164.3 164.3 NaN NaN NaN 2142.3 NaN NaN
2014-02-21 14:56:00 213.0 213.0 NaN NaN NaN 2127.3 NaN NaN
2014-02-21 14:57:00 221.1 221.1 NaN NaN 2330.3 2330.3 NaN 2777.7
我知道,data.interpolate()
但它有几个缺陷,因为它产生了这个结果,这对 ae 列有好处,但对于 fh 列,由于不同的原因它失败了::
a b c d e f g \
2014-02-21 14:50:00 123.5 433.5 123.5 NaN NaN NaN 2330.3
2014-02-21 14:51:00 129.9 523.2 132.3 NaN NaN NaN 2330.3
2014-02-21 14:52:00 136.3 536.3 136.3 NaN NaN NaN 2330.3
2014-02-21 14:53:00 164.3 464.3 164.3 NaN NaN NaN 2330.3
2014-02-21 14:54:00 213.0 413.0 164.3 NaN NaN 2763.0 2330.3
2014-02-21 14:55:00 164.3 164.3 164.3 NaN NaN 2142.3 2330.3
2014-02-21 14:56:00 213.0 213.0 164.3 NaN NaN 2127.3 2330.3
2014-02-21 14:57:00 221.1 221.1 164.3 NaN 2330.3 2330.3 2330.3
h
2014-02-21 14:50:00 2330.300000
2014-02-21 14:51:00 2394.214286
2014-02-21 14:52:00 2458.128571
2014-02-21 14:53:00 2522.042857
2014-02-21 14:54:00 2585.957143
2014-02-21 14:55:00 2649.871429
2014-02-21 14:56:00 2713.785714
2014-02-21 14:57:00 2777.700000
f) 间隙由开始时 4 分钟的 NaN 组成,它们应替换为该值 2763.0(即及时向后推断)
g) 间隔超过 5 分钟,但仍然可以推断
h) 间隙长于 5 分钟,但间隙仍被内插。
我理解这些原因,当然我没有指定它不应插入超过 5 分钟的间隔。我知道这interpolate
只会在时间上向前推断,但我希望它也能在时间上向后推断。是否有任何已知的方法可以用来解决我的问题,而无需重新发明轮子?
编辑:该方法data.interpolate
接受输入参数limit
,该参数定义要被插值替换的连续 NaN 的最大数量。但这仍然会插值到极限,但在这种情况下,我想继续使用所有 NaN。