问题
问题是 rpart 使用的是基于树的算法,它只能处理给定特征中有限数量的因素。因此,您可能有一个变量已设置为具有超过 53 个类别的因子:
> rf.1 <- randomForest(x = rf.train.2,
+ y = rf.label,
+ ntree = 1000)
Error in randomForest.default(x = rf.train.2, y = rf.label, ntree = 1000) :
Can not handle categorical predictors with more than 53 categories.
在您的问题的基础上,插入符号正在运行该函数,因此请确保您修复了超过 53 个级别的分类变量。
这是我之前的问题所在(注意邮政编码是一个因素):
# ------------------------------- #
# RANDOM FOREST WITH CV 10 FOLDS #
# ------------------------------- #
rf.train.2 <- df_train[, c("v1",
"v2",
"v3",
"v4",
"v5",
"v6",
"v7",
"v8",
"zipcode",
"price",
"made_purchase")]
rf.train.2 <- data.frame(v1=as.factor(rf.train.2$v1),
v2=as.factor(rf.train.2$v2),
v3=as.factor(rf.train.2$v3),
v4=as.factor(rf.train.2$v4),
v5=as.factor(rf.train.2$v5),
v6=as.factor(rf.train.2$v6),
v7=as.factor(rf.train.2$v7),
v8=as.factor(rf.train.2$v8),
zipcode=as.factor(rf.train.2$zipcode),
price=rf.train.2$price,
made_purchase=as.factor(rf.train.2$made_purchase))
rf.label <- rf.train.2[,"made_purchase"]
解决方案
删除所有超过 53 个级别的分类变量。
这是我的固定代码,调整分类变量zipcode,您甚至可以将其包装在这样的数字包装器中as.numeric(rf.train.2$zipcode)
:
# ------------------------------- #
# RANDOM FOREST WITH CV 10 FOLDS #
# ------------------------------- #
rf.train.2 <- df_train[, c("v1",
"v2",
"v3",
"v4",
"v5",
"v6",
"v7",
"v8",
"zipcode",
"price",
"made_purchase")]
rf.train.2 <- data.frame(v1=as.factor(rf.train.2$v1),
v2=as.factor(rf.train.2$v2),
v3=as.factor(rf.train.2$v3),
v4=as.factor(rf.train.2$v4),
v5=as.factor(rf.train.2$v5),
v6=as.factor(rf.train.2$v6),
v7=as.factor(rf.train.2$v7),
v8=as.factor(rf.train.2$v8),
zipcode=rf.train.2$zipcode,
price=rf.train.2$price,
made_purchase=as.factor(rf.train.2$made_purchase))
rf.label <- rf.train.2[,"made_purchase"]