我正在为矩阵乘法制作 Strassen 算法。该算法的基础是将矩阵 A (N * N) 划分为 A1-A4 (N / 2 * N / 2) 的四分之一。为此,我使用循环并为矩阵的每个四分之一分配内存。
int r;
double[,] A = new double[r, r];
double[,] A1 = new double[r / 2, r / 2];
double[,] A2 = new double[r / 2, r / 2];
double[,] A3 = new double[r / 2, r / 2];
double[,] A4 = new double[r / 2, r / 2];
for (int i = 0; i < r / 2; i++)
for (int j = 0; j < r / 2; j++)
{
A1[i, j] = A[i, j];
}
for (int i = 0; i < r / 2; i++)
for (int j = r / 2; j < r; j++)
{
A2[i, j - r / 2] = A[i, j];
}
for (int i = r / 2; i < r; i++)
for (int j = 0; j < r / 2; j++)
{
A3[i - r / 2, j] = A[i, j];
}
for (int i = r / 2; i < r; i++)
for (int j = r / 2; j < r; j++)
{
A4[i - r / 2, j - r / 2] = A[i, j];
}
有没有更简单的方法可以做到这一点,而无需额外的矩阵?(例如 A1=A [0 ... (n / 2)-1, 0 ... (n / 2)-1])?