如何r
从n
对象生成对象序列?我正在寻找一种方法来进行排列或组合,有/没有替换,有不同的和非不同的项目(又名多集)。
这与十二道有关。“不同的”解决方案可以以十二种方式包含,而“非独特”的解决方案不包括在内。
如何r
从n
对象生成对象序列?我正在寻找一种方法来进行排列或组合,有/没有替换,有不同的和非不同的项目(又名多集)。
这与十二道有关。“不同的”解决方案可以以十二种方式包含,而“非独特”的解决方案不包括在内。
下面,我们检查具有生成组合和排列功能的包。如果我遗漏了任何包裹,请原谅我并发表评论,或者更好的是,编辑这篇文章。
分析概要:
在我们开始之前,我们注意到一次选择m个不同与非不同项目替换的组合/排列是等价的。之所以如此,是因为当我们有替换时,它并不具体。因此,无论某个特定元素最初出现多少次,输出都会有该元素的一个实例重复 1 到m次。
gtools
v 3.8.1combinat
v 0.0-8multicool
v 0.1-10partitions
v 1.9-19RcppAlgos
v 2.0.1(我是作者)arrangements
v 1.1.0gRbase
v 1.8-3我没有包括permute
, permutations
, 或者gRbase::aperm/ar_perm
因为它们并不是真的要攻击这些类型的问题。
|----------------------------------------概述--------- -------------------------------------------|
|_______________| gtools | combinat | multicool | partitions |
| comb rep | Yes | | | |
| comb NO rep | Yes | Yes | | |
| perm rep | Yes | | | |
| perm NO rep | Yes | Yes | Yes | Yes |
| perm multiset | | | Yes | |
| comb multiset | | | | |
|accepts factors| | Yes | | |
| m at a time | Yes | Yes/No | | |
|general vector | Yes | Yes | Yes | |
| iterable | | | Yes | |
|parallelizable | | | | |
| big integer | | | | |
|_______________| iterpc | arrangements | RcppAlgos | gRbase |
| comb rep | Yes | Yes | Yes | |
| comb NO rep | Yes | Yes | Yes | Yes |
| perm rep | Yes | Yes | Yes | |
| perm NO rep | Yes | Yes | Yes | * |
| perm multiset | Yes | Yes | Yes | |
| comb multiset | Yes | Yes | Yes | |
|accepts factors| | Yes | Yes | |
| m at a time | Yes | Yes | Yes | Yes |
|general vector | Yes | Yes | Yes | Yes |
| iterable | | Yes | Partially | |
|parallelizable | | Yes | Yes | |
| big integer | | Yes | | |
任务m at a time
和general vector
是指生成结果“一次m ”(当m小于向量的长度时)和重新排列“一般向量”而不是 的能力1:n
。在实践中,我们通常关心寻找一般向量的重排,因此下面的所有检查都将反映这一点(如果可能)。
所有基准测试均在 3 个不同的设置上运行。
列出的结果是从设置#1(即 MBPro)获得的。其他两个系统的结果相似。此外,gc()
它会定期调用以确保所有内存都可用(请参阅 参考资料?gc
)。
首先,我们检查一次没有替换选择m的组合。
RcppAlgos
combinat
(或utils
)gtools
arrangements
gRbase
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(13)
testVector1 <- sort(sample(100, 17))
m <- 9
t1 <- comboGeneral(testVector1, m) ## returns matrix with m columns
t3 <- combinat::combn(testVector1, m) ## returns matrix with m rows
t4 <- gtools::combinations(17, m, testVector1) ## returns matrix with m columns
identical(t(t3), t4) ## must transpose to compare
#> [1] TRUE
t5 <- combinations(testVector1, m)
identical(t1, t5)
#> [1] TRUE
t6 <- gRbase::combnPrim(testVector1, m)
identical(t(t6)[do.call(order, as.data.frame(t(t6))),], t1)
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = comboGeneral(testVector1, m),
cbGRbase = gRbase::combnPrim(testVector1, m),
cbGtools = gtools::combinations(17, m, testVector1),
cbCombinat = combinat::combn(testVector1, m),
cbArrangements = combinations(17, m, testVector1),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.064 1.079 1.160 1.012 1.086 2.318 100
#> cbGRbase 7.335 7.509 5.728 6.807 5.390 1.608 100
#> cbGtools 426.536 408.807 240.101 310.848 187.034 63.663 100
#> cbCombinat 97.756 97.586 60.406 75.415 46.391 41.089 100
#> cbArrangements 1.000 1.000 1.000 1.000 1.000 1.000 100
现在,我们一次检查替换选择m的组合。
RcppAlgos
gtools
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(97)
testVector2 <- sort(rnorm(10))
m <- 8
t1 <- comboGeneral(testVector2, m, repetition = TRUE)
t3 <- gtools::combinations(10, m, testVector2, repeats.allowed = TRUE)
identical(t1, t3)
#> [1] TRUE
## arrangements
t4 <- combinations(testVector2, m, replace = TRUE)
identical(t1, t4)
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = comboGeneral(testVector2, m, TRUE),
cbGtools = gtools::combinations(10, m, testVector2, repeats.allowed = TRUE),
cbArrangements = combinations(testVector2, m, replace = TRUE),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.000 1.000 1.000 1.000 1.000 1.00000 100
#> cbGtools 384.990 269.683 80.027 112.170 102.432 3.67517 100
#> cbArrangements 1.057 1.116 0.618 1.052 1.002 0.03638 100
首先,我们一次检查没有替换选择m的排列。
RcppAlgos
gtools
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(101)
testVector3 <- as.integer(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))
## RcppAlgos... permuteGeneral same as comboGeneral above
t1 <- permuteGeneral(testVector3, 6)
## gtools... permutations same as combinations above
t3 <- gtools::permutations(10, 6, testVector3)
identical(t1, t3)
#> [1] TRUE
## arrangements
t4 <- permutations(testVector3, 6)
identical(t1, t4)
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = permuteGeneral(testVector3, 6),
cbGtools = gtools::permutations(10, 6, testVector3),
cbArrangements = permutations(testVector3, 6),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.079 1.027 1.106 1.037 1.003 5.37 100
#> cbGtools 158.720 92.261 85.160 91.856 80.872 45.39 100
#> cbArrangements 1.000 1.000 1.000 1.000 1.000 1.00 100
接下来,我们检查没有用一般向量替换的排列(返回所有排列)。
RcppAlgos
gtools
combinat
multicool
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(89)
testVector3 <- as.integer(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))
testVector3Prime <- testVector3[1:7]
## For RcppAlgos, & gtools (see above)
## combinat
t4 <- combinat::permn(testVector3Prime) ## returns a list of vectors
## convert to a matrix
t4 <- do.call(rbind, t4)
## multicool.. we must first call initMC
t5 <- multicool::allPerm(multicool::initMC(testVector3Prime)) ## returns a matrix with n columns
all.equal(t4[do.call(order,as.data.frame(t4)),],
t5[do.call(order,as.data.frame(t5)),])
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = permuteGeneral(testVector3Prime, 7),
cbGtools = gtools::permutations(7, 7, testVector3Prime),
cbCombinat = combinat::permn(testVector3Prime),
cbMulticool = multicool::allPerm(multicool::initMC(testVector3Prime)),
cbArrangements = permutations(x = testVector3Prime, k = 7),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.152 1.275 0.7508 1.348 1.342 0.3159 100
#> cbGtools 965.465 817.645 340.4159 818.137 661.068 12.7042 100
#> cbCombinat 280.207 236.853 104.4777 238.228 208.467 9.6550 100
#> cbMulticool 2573.001 2109.246 851.3575 2039.531 1638.500 28.3597 100
#> cbArrangements 1.000 1.000 1.0000 1.000 1.000 1.0000 100
现在,我们检查排列而不替换1:n
(返回所有排列)。
RcppAlgos
gtools
combinat
multicool
partitions
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(89)
t1 <- partitions::perms(7) ## returns an object of type 'partition' with n rows
identical(t(as.matrix(t1)), permutations(7,7))
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = permuteGeneral(7, 7),
cbGtools = gtools::permutations(7, 7),
cbCombinat = combinat::permn(7),
cbMulticool = multicool::allPerm(multicool::initMC(1:7)),
cbPartitions = partitions::perms(7),
cbArrangements = permutations(7, 7),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max
#> cbRcppAlgos 1.235 1.429 1.412 1.503 1.484 1.720
#> cbGtools 1152.826 1000.736 812.620 939.565 793.373 499.029
#> cbCombinat 347.446 304.866 260.294 296.521 248.343 284.001
#> cbMulticool 3001.517 2416.716 1903.903 2237.362 1811.006 1311.219
#> cbPartitions 2.469 2.536 2.801 2.692 2.999 2.472
#> cbArrangements 1.000 1.000 1.000 1.000 1.000 1.000
#> neval
#> 100
#> 100
#> 100
#> 100
#> 100
#> 100
最后,我们检查置换置换。
RcppAlgos
iterpc
gtools
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(34)
testVector3 <- as.integer(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))
t1 <- permuteGeneral(testVector3, 5, repetition = TRUE)
t3 <- gtools::permutations(10, 5, testVector3, repeats.allowed = TRUE)
t4 <- permutations(x = testVector3, k = 5, replace = TRUE)
鉴于迄今为止的结果,下一个基准测试有点令人惊讶。
microbenchmark(cbRcppAlgos = permuteGeneral(testVector3, 5, TRUE),
cbGtools = gtools::permutations(10, 5, testVector3, repeats.allowed = TRUE),
cbArrangements = permutations(x = testVector3, k = 5, replace = TRUE),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.106 0.9183 1.200 1.030 1.063 1.701 100
#> cbGtools 2.426 2.1815 2.068 1.996 2.127 1.367 100
#> cbArrangements 1.000 1.0000 1.000 1.000 1.000 1.000 100
这不是错字……gtools::permutations
几乎和其他编译函数一样快。我鼓励读者去查看源代码,gtools::permutations
因为它是最优雅的编程展示之一(R
或其他)。
首先,我们检查多重集的组合。
RcppAlgos
arrangements
要查找多重集的组合/排列,RcppAlgos
请使用freqs
参数指定源向量的每个元素重复多少次v
。
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(496)
myFreqs <- sample(1:5, 10, replace = TRUE)
## This is how many times each element will be repeated
myFreqs
#> [1] 2 4 4 5 3 2 2 2 3 4
testVector4 <- as.integer(c(1, 2, 3, 5, 8, 13, 21, 34, 55, 89))
t1 <- comboGeneral(testVector4, 12, freqs = myFreqs)
t3 <- combinations(freq = myFreqs, k = 12, x = testVector4)
identical(t1, t3)
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = comboGeneral(testVector4, 12, freqs = myFreqs),
cbArrangements = combinations(freq = myFreqs, k = 12, x = testVector4),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.000 1.000 1.000 1.000 1.000 1.000 100
#> cbArrangements 1.254 1.221 1.287 1.259 1.413 1.173 100
对于一次选择m个多集的排列,我们有:
RcppAlgos
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(8128)
myFreqs <- sample(1:3, 5, replace = TRUE)
testVector5 <- sort(runif(5))
myFreqs
#> [1] 2 2 2 1 3
t1 <- permuteGeneral(testVector5, 7, freqs = myFreqs)
t3 <- permutations(freq = myFreqs, k = 7, x = testVector5)
identical(t1, t3)
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = permuteGeneral(testVector5, 7, freqs = myFreqs),
cbArrangements = permutations(freq = myFreqs, k = 7, x = testVector5),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.461 1.327 1.282 1.177 1.176 1.101 100
#> cbArrangements 1.000 1.000 1.000 1.000 1.000 1.000 100
对于返回所有排列的多集排列,我们有:
RcppAlgos
multicool
arrangements
如何:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(8128)
myFreqs2 <- c(2,1,2,1,2)
testVector6 <- (1:5)^3
## For multicool, you must have the elements explicitly repeated
testVector6Prime <- rep(testVector6, times = myFreqs2)
t3 <- multicool::allPerm(multicool::initMC(testVector6Prime))
## for comparison
t1 <- permuteGeneral(testVector6, freqs = myFreqs2)
identical(t1[do.call(order,as.data.frame(t1)),],
t3[do.call(order,as.data.frame(t3)),])
#> [1] TRUE
基准:
microbenchmark(cbRcppAlgos = permuteGeneral(testVector6, freqs = myFreqs2),
cbMulticool = multicool::allPerm(multicool::initMC(testVector6Prime)),
cbArrangements = permutations(freq = myFreqs2, x = testVector6),
unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.276 1.374 1.119 1.461 1.39 0.8856 100
#> cbMulticool 2434.652 2135.862 855.946 2026.256 1521.74 31.0651 100
#> cbArrangements 1.000 1.000 1.000 1.000 1.00 1.0000 100
两者gtools
和combinat
都是用于重新排列向量元素的成熟软件包。有了gtools
更多选项(参见上面的概述)combinat
,您可以重新排列factors
. 使用multicool
,可以重新排列多重集。尽管partitions
和gRbase
就这个问题而言是有限的,但它们是强大的,包含用于分别处理分区和数组对象的高效函数。
arrangements
layout
参数(r = row-major
、c = column-major
和l = list
)指定格式。collect
& 。getnext
2^31 - 1
组合/排列getnext
。NB RcppAlgos
(通过lower/upper
见下文)和multicool
(通过nextPerm
)也能够做到这一点。getnext
来获得特定数量的结果。d
观察:
library(arrangements)
icomb <- icombinations(1000, 7)
icomb$getnext(d = 5)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1 2 3 4 5 6 7
#> [2,] 1 2 3 4 5 6 8
#> [3,] 1 2 3 4 5 6 9
#> [4,] 1 2 3 4 5 6 10
#> [5,] 1 2 3 4 5 6 11
当您只需要一些组合/排列时,此功能非常好。使用传统方法,您必须生成所有组合/排列,然后生成子集。这将使前面的示例变得不可能,因为有多个10^17
结果(即ncombinations(1000, 7, bigz = TRUE)
= 194280608456793000)。
此功能以及对生成器的改进arrangements
,使其在内存方面非常有效。
RcppAlgos
upper
(形式上rowCap
)类似于 的d
论证getnext
。观察:
library(RcppAlgos)
comboGeneral(1000, 7, upper = 5)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1 2 3 4 5 6 7
#> [2,] 1 2 3 4 5 6 8
#> [3,] 1 2 3 4 5 6 9
#> [4,] 1 2 3 4 5 6 10
#> [5,] 1 2 3 4 5 6 11
2.0.0
,有一个称为lower
允许以特定组合/排列开始生成的参数。这很好地设置了并行化,并允许在2^31 - 1
独立生成块之外进行快速生成。具有超过 60 亿种组合的并行示例:
system.time(parallel::mclapply(seq(1,6397478649,4390857), function(x) {
a <- comboGeneral(25, 15, freqs = c(rep(1:5, 5)), lower = x, upper = x + 4390856)
## do something
x
}, mc.cores = 7))
#> user system elapsed
#> 510.623 140.970 109.496
如果您想知道每个包如何扩展,我将为您提供最后一个示例,该示例测量每个包生成超过 1 亿个结果的速度(NBgtools::combinations
在这里省略,因为它会抛出错误:)evaluation nested too deeply...
。此外,我们combn
从utils
包中显式调用,因为我无法从combinat::combn
. 这两者之间的内存使用差异非常奇怪,因为它们只是略有不同(参见?utils::combn
“作者”部分)。
观察:
library(RcppAlgos)
library(arrangements)
library(microbenchmark)
options(digits = 4)
set.seed(2187)
testVector7 <- sort(sample(10^7, 10^3))
system.time(utils::combn(testVector7, 3))
#> user system elapsed
#> 179.956 5.687 187.159
system.time(RcppAlgos::comboGeneral(testVector7, 3))
#> user system elapsed
#> 1.136 0.758 1.937
system.time(arrangements::combinations(x = testVector7, k = 3))
#> user system elapsed
#> 1.963 0.930 2.910
system.time(RcppAlgos::permuteGeneral(testVector7[1:500], 3))
#> user system elapsed
#> 1.095 0.631 1.738
system.time(arrangements::permutations(x = testVector7[1:500], k = 3))
#> user system elapsed
#> 1.399 0.584 1.993
comboGeneral
同样执行时arrangements::combinations
,内存在调用前会跳跃近 2 Gbs gc
。这似乎是正确的#rows * #nols * bytesPerCell / 2^30 bytes = choose(1000,3) * 3 * 4 / 2^30 bytes = (166167000 * 3 * 4)/2^30 = 1.857 Gbs
)。然而,在执行时combn
,内存行为是不稳定的(例如,有时它会使用所有 16 Gb 的内存,而其他时候它只会增加几个 Gbs)。当我在 Windows 设置上对此进行测试时,它经常会崩溃。
Rprof
我们可以使用和来确认这一点summaryRporf
。观察:
Rprof("RcppAlgos.out", memory.profiling = TRUE)
t1 <- RcppAlgos::comboGeneral(testVector7, 3)
Rprof(NULL)
summaryRprof("RcppAlgos.out", memory = "both")$by.total
total.time total.pct mem.total self.time self.pct
"CombinatoricsRcpp" 1.2 100 1901.6 1.2 100
"RcppAlgos::comboGeneral" 1.2 100 1901.6 0.0 0
Rprof("arrangements.out", memory.profiling = TRUE)
t3 <- arrangements::combinations(10^3, 3, testVector7)
Rprof(NULL)
summaryRprof("arrangements.out", memory = "both")$by.total
total.time total.pct mem.total self.time self.pct
".Call" 2.08 99.05 1901.6 2.08 99.05
使用RcppAlgos
& arrangements
,mem.total
注册刚刚结束1900 Mb
。
这是比较gtools
、utils
和的较小向量上的内存配置文件combinat
。
testVector7Prime <- testVector7[1:300]
Rprof("combinat.out", memory.profiling = TRUE)
t3 <- combinat::combn(testVector7Prime, 3)
Rprof(NULL)
summaryRprof("combinat.out", memory = "both")$by.total
total.time total.pct mem.total self.time self.pct
"combinat::combn" 3.98 100.00 1226.9 3.72 93.47
Rprof("utils.out", memory.profiling = TRUE)
t4 <- utils::combn(testVector7Prime, 3)
Rprof(NULL)
summaryRprof("utils.out", memory = "both")$by.total
total.time total.pct mem.total self.time self.pct
"utils::combn" 2.52 100.00 1952.7 2.50 99.21
Rprof("gtools.out", memory.profiling = TRUE)
t5 <- gtools::combinations(300, 3, testVector7Prime)
Rprof(NULL)
summaryRprof("gtools.out", memory = "both")$by.total
total.time total.pct mem.total self.time self.pct
"rbind" 4.94 95.00 6741.6 4.40 84.62
有趣的是,utils::combn
使用combinat::combn
不同数量的内存并花费不同的时间来执行。这不适用于较小的向量:
microbenchmark(combinat::combn(2:13, 6), utils::combn(2:13, 6))
Unit: microseconds
expr min lq mean median uq max neval
combinat::combn(2:13, 6) 527.378 567.946 629.1268 577.163 604.3270 1816.744 100
utils::combn(2:13, 6) 663.150 712.872 750.8008 725.716 771.1345 1205.697 100
并且使用gtools
的总内存是utils
. 应该注意的是,对于这 3 个包,我每次运行它们时都会得到不同的结果(例如,combinat::combn
有时我会得到 9000 Mb,然后我会得到 13000 Mb)。
尽管如此,没有一个可以匹配RcppAlgos
OR arrangements
。在上面的示例中运行时,两者都只使用 51 Mb。
基准脚本:https ://gist.github.com/randy3k/bd5730a6d70101c7471f4ae6f453862e (由https://github.com/tidyverse/reprex渲染)
*:向Miklós Bóna的A Walk through Combinatorics致敬
编辑:我已经更新了答案以使用更有效的包arrangements
arrangement
安排包含一些用于排列和组合的有效生成器和迭代器。已经证明它arrangements
优于大多数现有的类似类型的软件包。一些基准可以在这里找到。
以下是以上问题的答案
# 1) combinations: without replacement: distinct items
combinations(5, 2)
[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 1 5
[5,] 2 3
[6,] 2 4
[7,] 2 5
[8,] 3 4
[9,] 3 5
[10,] 4 5
# 2) combinations: with replacement: distinct items
combinations(5, 2, replace=TRUE)
[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 2 2
[7,] 2 3
[8,] 2 4
[9,] 2 5
[10,] 3 3
[11,] 3 4
[12,] 3 5
[13,] 4 4
[14,] 4 5
[15,] 5 5
# 3) combinations: without replacement: non distinct items
combinations(x = c("a", "b", "c"), freq = c(2, 1, 1), k = 2)
[,1] [,2]
[1,] "a" "a"
[2,] "a" "b"
[3,] "a" "c"
[4,] "b" "c"
# 4) combinations: with replacement: non distinct items
combinations(x = c("a", "b", "c"), k = 2, replace = TRUE) # as `freq` does not matter
[,1] [,2]
[1,] "a" "a"
[2,] "a" "b"
[3,] "a" "c"
[4,] "b" "b"
[5,] "b" "c"
[6,] "c" "c"
# 5) permutations: without replacement: distinct items
permutations(5, 2)
[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 1 5
[5,] 2 1
[6,] 2 3
[7,] 2 4
[8,] 2 5
[9,] 3 1
[10,] 3 2
[11,] 3 4
[12,] 3 5
[13,] 4 1
[14,] 4 2
[15,] 4 3
[16,] 4 5
[17,] 5 1
[18,] 5 2
[19,] 5 3
[20,] 5 4
# 6) permutations: with replacement: distinct items
permutations(5, 2, replace = TRUE)
[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 2 1
[7,] 2 2
[8,] 2 3
[9,] 2 4
[10,] 2 5
[11,] 3 1
[12,] 3 2
[13,] 3 3
[14,] 3 4
[15,] 3 5
[16,] 4 1
[17,] 4 2
[18,] 4 3
[19,] 4 4
[20,] 4 5
[21,] 5 1
[22,] 5 2
[23,] 5 3
[24,] 5 4
[25,] 5 5
# 7) permutations: without replacement: non distinct items
permutations(x = c("a", "b", "c"), freq = c(2, 1, 1), k = 2)
[,1] [,2]
[1,] "a" "a"
[2,] "a" "b"
[3,] "a" "c"
[4,] "b" "a"
[5,] "b" "c"
[6,] "c" "a"
[7,] "c" "b"
# 8) permutations: with replacement: non distinct items
permutations(x = c("a", "b", "c"), k = 2, replace = TRUE) # as `freq` doesn't matter
[,1] [,2]
[1,] "a" "a"
[2,] "a" "b"
[3,] "a" "c"
[4,] "b" "a"
[5,] "b" "b"
[6,] "b" "c"
[7,] "c" "a"
[8,] "c" "b"
[9,] "c" "c"
arrangements
与现有软件包相比,使用起来几乎没有什么优势。
整体框架:您不必为不同的方法使用不同的包。
这是非常有效的。有关一些基准,请参阅https://randy3k.github.io/arrangements/articles/benchmark.html。
它的内存效率很高,它能够生成所有 13 个!1 到 13 的排列,由于矩阵大小的限制,现有的包将无法这样做。迭代器的getnext()
方法允许用户一一得到安排。
生成的排列按照某些用户可能需要的字典顺序排列。