我认为您可以使用它unique来查找所有可能的 ID / 站点,然后从唯一和子集中进行采样。
例如,让我们创建一个数据集
# Set the RNG seed for reproducibility
set.seed(12345)
ID <- rep(100:110, c(2, 6, 3, 1, 3, 8, 9, 2, 4, 5, 6))
site <- rep(1:6, c(8, 7, 8, 11, 4, 11))
species <- sample(letters[1:5], length(ID), replace=T)
df <- data.frame(ID=ID, Site=site, Species=species)
所以, df 看起来像:
> head(df, 15)
    ID Site Species
1  100    1       d
2  100    1       e
3  101    1       d
4  101    1       e
5  101    1       c
6  101    1       a
7  101    1       b
8  101    1       c
9  102    2       d
10 102    2       e
11 102    2       a
12 103    2       a
13 104    2       d
14 104    2       a
15 104    2       b
总结数据,我们有:
Site 1 -> 100, 101
Site 2 -> 102, 103, 104
Site 3 -> 105
Site 4 -> 106, 107
Site 5 -> 108
Site 6 -> 109, 110
现在,假设我想从 3 个站点中进行选择
# The number of sites we want to sample
num.sites <- 3
# Find all the sites
all.sites <- unique(df$Site)
# Pick the sites. 
# You may also want to check that num.sites <= length(all.sites)
sites <- sample(all.sites, num.sites)
在这种情况下,我们选择
> sites
[1] 4 5 6
好的,现在我们找到每个站点可用的 ID
# Now find the IDs in each of those sites
# simplify=F is VERY important to ensure we get a list even if every
# site has the same number of IDs
IDs <- sapply(chosen.sites, function(s)
    {
    unique(df$ID[df$Site==s])
    }, simplify=FALSE)
这给了我们
> IDs
[[1]]
[1] 106 107
[[2]]
[1] 108
[[3]]
[1] 109 110
现在为每个站点选择一个 ID
# NOTE: this assumes the same ID is not found in multiple sites
# but it's easy to deal with the opposite case
# Again, we return a list, because sapply does not seem 
# to play well with data frames... (try it!)
res <- sapply(IDs, function(i)
  {
  chosen.ID <- sample(as.list(i), 1)
  df[df$ID==chosen.ID,]
  }, simplify=FALSE)
# Finally convert the list to a data frame
res <- do.call(rbind, res)
> res
    ID Site Species
24 106    4       d
25 106    4       d
26 106    4       b
27 106    4       d
28 106    4       c
29 106    4       b
30 106    4       c
31 106    4       d
32 106    4       a
35 108    5       b
36 108    5       b
37 108    5       e
38 108    5       e
44 110    6       d
45 110    6       b
46 110    6       b
47 110    6       a
48 110    6       a
49 110    6       a
所以,一切都在一个函数中
pickSites <- function(df, num.sites)
    {
    all.sites <- unique(df$Site)
    chosen.sites <- sample(all.sites, num.sites)
    IDs <- sapply(chosen.sites, function(s)
        {
        unique(df$ID[df$Site==s])
        }, simplify=FALSE)
    res <- sapply(IDs, function(i)
        {
        chosen.ID <- sample(as.list(i), 1)
        df[df$ID==chosen.ID,]
        }, simplify=FALSE)
    res <- do.call(rbind, res)
    }