我有一个数据框如下:
fsym EOS BTC BNB
time
2018-11-30 00:00:00+00:00 -0.051903 -0.069088 -0.058162
2018-12-01 00:00:00+00:00 0.026936 0.044739 0.040303
2018-12-02 00:00:00+00:00 -0.034843 -0.012935 -0.005900
2018-12-03 00:00:00+00:00 -0.108108 -0.070375 -0.028180
2018-12-04 00:00:00+00:00 -0.048583 0.019509 0.131986
我可以简单地计算列成对相关性:
pt = pt.rolling(3).corr()
产生:
sym EOS BTC BNB
time fsym
2018-11-30 00:00:00+00:00 EOS NaN NaN NaN
BTC NaN NaN NaN
BNB NaN NaN NaN
2018-12-01 00:00:00+00:00 EOS NaN NaN NaN
BTC NaN NaN NaN
BNB NaN NaN NaN
2018-12-02 00:00:00+00:00 EOS 1.000000 0.952709 0.938688
BTC 0.952709 1.000000 0.999066
BNB 0.938688 0.999066 1.000000
2018-12-03 00:00:00+00:00 EOS 1.000000 0.998738 0.969385
BTC 0.998738 1.000000 0.980492
BNB 0.969385 0.980492 1.000000
...
如何类似地计算数据帧的成对差异?我猜这相当于使用 1 的滚动窗口。
编辑:正如评论中所指出的,上面的例子实际上并不是我没有注意到的列相关性。