我正在尝试用于神经网络的 Watson Studio 视觉建模器。在学习过程中,我尝试了一些不同的设计,并发布了几个培训定义。
如果我导航到 Experiment Builder,我会看到很多定义,有些是旧的并且不再需要。
如何删除旧的培训定义?(理想情况下来自 Watson Studio UI)
我正在尝试用于神经网络的 Watson Studio 视觉建模器。在学习过程中,我尝试了一些不同的设计,并发布了几个培训定义。
如果我导航到 Experiment Builder,我会看到很多定义,有些是旧的并且不再需要。
如何删除旧的培训定义?(理想情况下来自 Watson Studio UI)
Watson Machine Learning python 客户端不支持删除训练运行定义 。WML 的 python 客户端 API显示了支持的选项。不过,WML 团队正在努力添加这样的删除功能。
同时,您可以使用WML 的 CLI 工具执行bx ml delete
:
NAME:
delete - Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs
USAGE:
bx ml delete models MODEL-ID
bx ml delete deployments MODEL-ID DEPLOYMENT-ID
bx ml delete training-runs TRAINING-RUN-ID
bx ml delete training-definitions TRAINING-DEFINITION-ID
bx ml delete experiments EXPERIMENT-ID
bx ml delete experiment-runs EXPERIMENT-ID EXPERIMENT-RUN-ID
用于bx ml list
获取有关您要删除的项目的详细信息:
实际上,python 客户端支持删除训练定义。您只需调用client.repository.delete(artifact_uid)。可以使用相同的方法从存储库中删除任何项目(模型、训练定义、实验)。它记录在python客户端文档btw中:
删除(artifact_uid)
Delete model, definition or experiment from repository.
Parameters: artifact_uid ({str_type}) – stored model, definition, or experiment UID
A way you might use me is:
>>> client.repository.delete(artifact_uid)
Training_run 与 training_definition 完全不同。如果需要,您也可以将其删除:
删除(run_uid)
Delete training run.
Parameters: run_uid ({str_type}) – ID of trained model
A way you might use me is:
>>> client.training.delete(run_uid)
如果需要,您还可以通过调用以下方法删除 Experiment_run:
删除(experiment_run_uid)
Delete experiment run.
Parameters: experiment_run_uid ({str_type}) – experiment run UID
A way you might use me is
>>> client.experiments.delete(experiment_run_uid)
更多细节请参考 python 客户端文档:http ://wml-api-pyclient-dev.mybluemix.net/